Automated Vehicles Symposium 2017

Cross-ministerial Strategic Innovation Promotion Program

SIP Automated driving systems

- Mobility bringing everyone a smile -

July 13, 2017 Sub Program Director of SIP-adus Yoichi SUGIMOTO

Outline of SIP

Intensive R&D program

- ✓ promote 5-years R&D (FY2014 FY2018)
 ✓ enhancing cross-ministerial cooperation

11 research themes

From societal issues such as Energy, Next-Generation Infrastructures and Local Resources, including R&D for AD

Leadership and total Budget **CSTI** appointed Program Directors and allocates the budget for each research theme. *

* \50bil in total per year (65% for SIP 11 themes, 35% for medical R&D)

> adus : <u>Automated driving systems</u> for <u>universal</u> service

Promotion framework of Japanese Government

Goal & Exit Strategy

- 1 . Ensuring safety and traffic jam reduction on the road
- 2. Realization and spread of Automated Driving System
- 3. Realization of advanced next generation public bus service for vulnerable people.

Technologies for Automated driving systems

Dynamic map

Use Dynamic Map as an advanced traffic info. database for all vehicles, not only as a precise map for automated driving vehicle.

Base

Dynamic Map Planning Co., Ltd. was established as a result of 2years SIP activity.

Establishment of Dynamic map database

Dynamic map

- [Required condition]
- Freshness of data/Easiness of data updating
- Scalability
- Low cost
- Security etc.

Public-Private Partnership

- Data commoditizing
- Utilization of probe data

Dynamic Map Planning Co., Ltd

8

Cyber security

(1)Common Models of AD for Threat Analysis 2 Validation/Evaluation Methods and Criteria (3)Certificate Validation of V2X communication

(2)Threat Info.

Human Machine Interface

1) To investigate effects of system information on drivers' behavior. 2) To investigate effects of driver state on his/her behavior in transition. 3) To investigate effective ways to functionalize AV to be communicative

Driver state

- Cognitively distracted
- Physically distracted
- •Low arousal
- •Lack of SA
- •Out of position

Readiness

- Head orientation and visual
- performance
- Heart rate and blood pressure
- Body temperature
- •Skin conductance
- •EEG
- Posture and body

Performance at the event

 Longitudinal and lateral control of the vehicle • Minimum distance and minimum TTC to the hazard •Time spent to regain control

Pedestrian collision reduction

Vehicle-to-Pedestrian (V2P) Communication

ITS terminal Control unit

Powe

700MHz Direct Wireless Communication

- 700MHz band communication -
- High-precision positioning -
- Danger identification and pedestrian safety support

Snapshot of radar scanning

Installation of 79GHz rada

Infrastructure radar with V2I communication

79GHz band radar from roadside of intersection

Next generation Transport

ART information center

\ll Purpose \gg

- 1. To activate the R&D
- 2. To prove each elemental technology
- 3. To enhance international cooperation and harmonization
- 4. To Build Social acceptance

\ll Participant \gg

- OEM/Supplier
- University/Research organization
- Ministries, government officers
- Foreign OEM/supplier
- Journalist

\ll Period \gg

Autumn 2017 \sim beginning of 2019

\ll Main themes \gg

Dynamic Map(Example)

- To validate 3D high-resolution digital map data
- To validate data collection and distribution method
- To verify the utility of semi dynamic information
- ✓ The map data is provided by SIP-adus.

HMI(Example)

- To collect and analyze the driver state data
- To define driving readiness status and driver
- $\hfill\square$ Verification of HMI methods and devices .

Cyber Security(Example)

- To Validate the evaluation method
- □ Inspect defense functions of ADV

Layer1: Communication of Out Car Layer2: E/E Architecture Layer3: In Car Bus Protocol Layer4: ECU Software Structure

Automobile Society

1886 BENZ Patent Motorwagen

(Toyota Automobile Museum)

1907 Piccadilly Circus, London

(Alpshima; sohske.cocolog-nifty.com)

Common Platform

A common base platform(map, rule etc.) is necessary for keeping safety and the social order. ⇒ Promoting harmonization and standardization

International Cooperation activities

Experts assigned in Focused areas

1. Dynamic Map 2. Connected Vehicle **3. Human Factors** 4. Impact Assessment **5. Next Generation** Transport 6. Security

International Organization for Standardization

SIP-adus Workshop

SIP-adus Workshop 2016

Recognized as a specialized international conference on automated driving, participants from all over the world increased. Sharing latest information, building friendship among experts, were highly evaluated by the participants.

 Organizer : Cross-Ministerial Strategic Innovation Promotion Program, Council for Science, Technology and Innovation, Cabinet Office, Government of Japan

Date : November 15-17, 2016

Venue : Tokyo International Exchange Center http://www.jasso.go.jp/tiec/index e.html

- Attendees : 425 from 17 countries
- Speakers

: 61 includes 34 speakers and moderators from overseas

Snapshot with speakers from overseas after Minister Tsuruho 20

