

"Strategic Innovation Promotion Program (SIP) Phase 2 / Automated Driving (Expansion of Systems and Services) / Research and Development Related to Collection, Integration, and Distribution of Narrow Area / Medium Area Information"

Achievement report for 2020

Overview version

NTT DOCOMO, Inc. Oki Electric Industry Co., Ltd. Sumitomo Electric Industries, Ltd. Panasonic Corporation

April 2021

Table of Contents

- **1.** Overview of this research and development
- 2. Implementation details and implementation system
- 3. Assumed use case
- 4. Achievement Goal (KPI)
- 5. R & D evaluation / verification
 - (1) Narrow area network: Roadside processing method 1 [Oki Electric Industry]
 - (2) Narrow area network: Roadside processing method 2 [Panasonic]
 - (3) Narrow area network: Center processing method [Sumitomo Electric Industries]
 - (4) Medium area network [NTT DOCOMO]
 - (5) Comprehensive confirmation

6. Summary (proposals, future issues, etc.)

1. Overview of this research and development

Assumed issues

In a complicated environment such as an intersection, the blind spot of the sensor of the own vehicle increases, and the automated vehicle will stop / slow down until the safety inside the intersection can be confirmed in front of the intersection, which affects the traffic flow.

Aim and purpose of this research and development

- Collecting and integrating target information, etc. that may be out of sight for each vehicle from multiple sources, distribute to automated vehicles (distribute only the necessary range of information in a format that can be shared with the information on the vehicle side)
- Distribution will be carried out in stages from the medium area to the narrow area, and support (*) assuming the following UC will be provided for each.

In order to implement the above support, we will formulate a communication method / common interface for collecting information from multiple sources, a draft index for integrating the collected information, and an information distribution method for distribution to automated vehicles.

Output Common interface for collection and distribution Integrated indicators and guidelines for distribution methods

1. Overview of this research and development (1) Expected effects of the medium area network)

As information to support automated vehicles to change lanes or routes in advance, the situation in front of the vehicle (information for multiple intersections starting from the vehicle position) is continuously distributed.

1. Overview of this research and development (2) Expected effects of the narrow network)

In order to support smooth entry and passage into intersections with complicated traffic environments, we will grasp the traffic conditions inside and near the intersection and distribute it to automated vehicles.

Before

Obstructions such as surrounding buildings and vehicles cause out-of-sight from automated vehicles \rightarrow Traffic flow may be affected by stopping in front of the intersection when entering the intersection or stagnating in the intersection when passing through the intersection.

2. Implementation details and implementation system

- For narrow areas, we evaluated two methods, "installed on the roadside for dedicated communication" and "installed on the center for mobile communication".
- The medium area is "configured to be installed in the mobile communication network", and communication delays and communication traffic are evaluated.
- Oki Electric Industry / Panasonic / Sumitomo Electric Industries are in charge of the narrow area, and NTT DOCOMO is in charge of the medium area.

3. Assumed use case

- Reconfirmed the consistency with UC examined in the Cooperative Automated Driving Communication Method TF
- Each UC is detailed and prioritized. (Required or optional)

SIP Cooperative	Detection	target	UC Use case details				Narrow Area			
Automated Driving UC	Detection	target	#			Center	Road	lside	with	
<u> </u>					DOCOM O	SEI	Panaso nic	OKI	existing system	
d-5	(Information collect area netwo	ted from narrow ork etc.)	M1	Provides information such as stagnating status due to waiting for a right turn at the front intersection (\rightarrow Support for route change)	0	_	-	_	-	
d-1	(Information collected from narrow area network etc.)		M2	Provides information such as intermittent road parking ahead $(\rightarrow \text{Supports lane change})$	0	_	-	_	_	
c-2-2	Oncoming lane straight-ahead vehicleStraight vehicleN1Provides information on oncoming straight-ahead vehicles that cannot be detected by the own vehicle sensor		-	0	-	0	DSSS			
	Right turn road congestion	Right turn situation	N2	Provides information on the status of the right turn (empty space, etc.)	_	0	0	0	_	
c-2-2		Approaching	N3-1	Provides information on the approach of pedestrians and bicycles to the pedestrian crossing	-	0	0	0	-	
(*1)	Pedestrian	Waiting for crossing	N3-2	Provides detailed attribute information for pedestrians stopped near the pedestrian crossing	_		_	_	_	
		Crossing	N3-3	Provides information on pedestrians and bicycles on pedestrian crossings	_	0	0	0	DSSS	
d-5	Obstacle Around the vehicle		N4-1	Providing vehicle sensing information (can be used for UC other than right turn support)	_	0	-	_	-	

4. Achievement Goal (KPI)

- The definition of R & D KPIs is clarified based on the following contents described in the specifications (explained in the previous WG).
- > In the process of refining the UC scenario for verification, the KPI is also refined for each UC.

4. Achievement goal (KPI) [Detailed (1/2)]

Rese	Ach	ievement	goal (KPI)			Points and
arch items	Index	Assur	ned target values and rationale	Definition	KPI determination method and validity for each use case	research and development
Extra ction	Correct answer rate of information extracted from information sources	90% or more	Equivalent to the correct answer rate of general sensors [Reference conditions]	Percentage of correctly detecting the presence (type, position) of vehicles, bicycles, and pedestrians	 Define the allowable range of position error for each UC based on the road and sidewalk width, etc. Set the ratio (correct answer rate) of the extraction result within the allowable range of position error to the true value as the target value. 	Examination of extraction algorithm and sensor installation conditions for each sensor
Collec tion	Communication delay from information source to narrow area server	Within 100ms	Equivalent to communication delay in existing vehicle-to-vehicle communication standards	Time required to collect information by communication	 Within 100ms between the information source and the narrow area server Add a time stamp with the application of the sending device (PC, etc.) and calculate the difference between the reception time and the time stamp with the application of the receiving device (narrow area edge). 	Verification of delay in large-capacity data collection by 5G communication
Integ ration	Correct answer rate of information integrated in narrow area server	90% or more	There is no deterioration in accuracy due to integration with respect to the accuracy rate of extraction.	Percentage of information extracted from multiple sources that could be integrated without excess or deficiency	① Set the ratio (correct answer rate) of the integration result within the allowable range of position error to the true value as the target value.	Examination of the same judgment method as the condition arrangement of time deviation and position deviation
	Communication traffic reduction rate from narrow area server etc. to medium area server	50% or more	Uniform target value to secure a margin for the number of users that can be accommodated (number of narrow areas, etc.)	Communication traffic reduction rate compared to the case where the technology is not applied	${\rm (I)}$ Limit the collected information only to the direction of travel of the vehicle	
Distri butio n	Communication delay from narrow area server to distribution destination	Within 100ms	Equivalent to communication delay in existing vehicle-to-vehicle communication standards	Time required for information distribution by communication	 Within 100ms between the narrow area server and the distribution vehicle Add a time stamp with the application of the sending device (narrow area server) and calculate the difference between the receiving time and the time stamp with the application of the receiving device (PC, etc.) 	Examination of communication specifications / control when distributing multiple vehicles by DSRC
	Communication traffic reduction rate	Tommunication raffic reduction ate 50% or nore ate (distribution destinations) that can be accommodated		Communication traffic reduction rate compared to the case where the technology is not applied	① Limit the collected information only to the traveling direction of the vehicle, and distribute the information as well.	Reduction of duplicate targets by integrated processing, examination and simulation of distribution control algorithm

■ 4. Achievement goal (KPI) [Detailed (2/2)]

Rese	Ach	ievement	goal (KPI)			Points and	
arch items	Index	Assur	ned target values and rationale	Definition	KPI determination method and validity for each use case	research and development	
Distri butio n (conti nued)	Communication delay from medium area server to distribution destination	Within 100ms	Equivalent to communication delay in existing vehicle-to-vehicle communication standards	Time required for information distribution by communication	Communication delay within 100ms from the medium area server to the distribution destination vehicle. The target is communication between connection IFs (server processing performance is not considered). Calculate the difference between the time stamps of the medium area server and the in-vehicle terminal * For time stamps, compare and confirm the differences in advance. The wireless section is evaluated based on the measured values.	Reduction of unnecessary information by integrating sensor information, reduction of distribution frequency / target according to the driving status of	
	Communication traffic reduction rate	hication duction 50% or more duction		Communication traffic reduction rate by reducing the distribution range according to the situation of the distribution destination vehicle, etc.	Calculate the traffic reduction rate depending on the presence or absence of distribution control Implemented distribution control according to the running speed of the vehicle * Minimum area (200m) when traveling 60km or 30km. Based on the traffic flow simulation data, the amount of traffic data when the distribution range is variable is examined on the desk and the reduction rate is calculated.	the distribution destination vehicle, examination of a mechanism to collect driving status by communication	
Over all	A series of processing time from collection to distribution (narrow area)	Within 1s	Equivalent to the definition of "dynamic information" (≤1s) in the dynamic map	Total time required for extraction processing by information source or narrow area server, collection by communication (information source to narrow area server), integrated processing by narrow area server, and distribution by communication	$(\ensuremath{\mathbbm 1}$ Not changed for each UC to realize smooth running of automated vehicles	Determining the limit when the target number increases (verified for each processing unit)	
	A series of processing time from collection to distribution (medium area))	Within 3s	Set the shortest case (information distribution of the previous intersection) among the UCs assumed by the medium area server	Total time required for extraction processing at the information source or narrow area server, collection by communication (information source-narrow area server, narrow area server-medium area server), integrated processing at the medium area server, and distribution by communication	Distribution time from the narrow area server to the invehicle terminal is within 3 seconds. Calculate the processing time from the time stamps of the narrow area server and the in-vehicle terminal * For time stamps, compare and confirm the differences in advance. A series of required time is calculated by extracting the time required to connect the target section from the time stamp and adding them together. The target sections are 1 information source to narrow area server, 2 narrow area server to medium area server, and 3 medium area server to distribution target vehicle. A series of processing time is calculated by adding up the times of 1, 2, and 3 above.	Standardization of interfaces (message format, etc.) for data collection / integration / distribution processing time reduction, etc.	

5. R & D evaluation / verification (Summary: KPI achievement status)

(1)Narrow area network: Roadside processing method 1 [Oki Electric Industry]

(1) Narrow area network: Roadside processing method 1 [Oki Electric Industry]

In the JARI Tsukuba test course, the following test environment was constructed, and device connection confirmation and KPI evaluation were carried out.

(1) Narrow area network: Roadside processing method 1 [Oki Electric Industry] Distribution control method

- When an automated vehicle collects vehicle information acquired by an independent sensor as target information, it improves the packet arrival rate / increases the number of vehicles that can be collected by controlling the transmission timing of collection and distribution.
- > Separate the transmission timing of the in-vehicle device according to the distance from the lane and the intersection
- Confirmed that the packet arrival rate increases compared to the conventional method by applying collection / distribution control.

Action item

Examination and simulation evaluation of collection / distribution control that "time-divides the transmission timing of the roadside unit and the in-vehicle unit" and "time-divides the transmission timing of the in-vehicle unit for each area"

(1) Issues

•Packet collisions are increasing because the communication status of other radios cannot be grasped due to the shielding of radio waves by buildings at intersection corners and large vehicles.

(2) Countermeasures

•Time division between roadside unit and in-vehicle unit: See ARIB STD-T109

•Time division between in-vehicle devices: Separation by communication area based on driving lane (direction) & distance from intersection

Simulation conditions (example)

- Number of vehicles: 57 (assumed at peak times)
- Message size (sent only required, no overhead assumed) Vehicle / roadside unit transmission: 55 bytes / 2,000 bytes
- Transmission cycle: 100ms (Number of continuous transmissions: 2 times) * Conventional method ARIB STD-T109 does not continuously transmit
- Radio wave propagation model: Path loss, NLOS (intersection angle): ITU-R P.1411 model, Shielding loss due to large vehicles: 10 dB, fading: 3GPP model

Evaluation result (example): Packet error rate of invehicle device transmission (collection)

Consideration

- Confirmed that PER decreases (packet arrival rate increases) due to application of countermeasure technology
- The improvement effect of PC5 is small because of packet collision when switching the transmission timing at the center of the intersection (random selection from empty slots).
- Performance improvement confirmed by changing the division area (without switching at the center)

(1) Narrow area network: Roadside processing method 1 [Oki Electric Industry] Integrated method

➤ Integrate multiple sensor extraction information ⇒ Combine sensor areas in a wide range and provide detailed attributes

(1) Narrow area network: Roadside processing method 1 [Oki Electric Industry]

KPI verification (target: communication delay within 100ms, series processing time within 1 s, extraction / integration correct answer rate 90% or more)

About the progress of KPI verification results

- Data acquisition and organization by field verification and simulation (emulation) were almost completed

(Simulation results of limit test are being organized)

Task

①:When the number of vehicles is large, such as during peak hours, to collect vehicle information, secure communication performance (packet arrival rate, communication delay) by applying countermeasure technology to narrow-area communication.

 \Rightarrow It is necessary to verify the countermeasure technology using the actual machine (this time only simulation evaluation)

Typical UC scenarios were selected and described

Verific	UC scenario	Со	Correct and	swer ra	ate (posit	ion)	Communicatio	Communication delay / processing time							
ation type		m mo n tes t	Extractio n	P as s / Fa il	Inte grati on	P a ss / F ai I	① Information source ⇒ Narrow area server	Pass / Fail * 1	② Extraction	3 Integration	④ Narrow area server ⇒ Distribution destination	Pass / Fail * 1	Total (①∼④)	Pass / Fail * 2	
Field verific ation	UC1-1-1		1): 100% 2): 100% 3): 100%	0	100 %	0	1): 13ms 2): 28ms 3): 32ms	99. % or more	1): 50ms 2): 59ms 3): 69ms	1): 46ms 2): 95ms 3): 100ms	1): 10ms 2): 23ms 3): 28ms	99. % Or more	1): 119ms 2): 205ms 3): 229ms	99. % or more	Sensors: ①2, ②, ③1 Extracted targets: 1 Distributed vehicles: 1
	UC2-1-1	0	 99% 	0	100 %		Ŷ	¢	1):51ms 2):60ms 3):68ms	1):51ms 2):96ms 3):100ms	Ŷ	Ť	1): 125ms 2): 207ms 3): 228ms	99. % or more	•Sensors: :①2 •Extracted targets: 1 •Distributed vehicles: 1
	UC3-1-0	0	①: 100%	0	100 %	0	Ŷ	¢	1): 49ms 2): 54ms 3): 60ms	1): 49ms 2): 96ms 3): 101ms	Ŷ	Ŷ	1): 121ms 2): 201ms 3): 221ms	99. % or more	•Sensors: 1)2 •Extracted targets: 1 •Distributed vehicles:1
	UC4-1-1								Simulation	(emulation)	evaluation r	esult			Not subject to evaluation
Peak assum ption	Limited area ② (UC2 ~ 3)	0		—	_	—	①:53ms ②:57ms ③:57ms	99% aor more	_	1 : 56ms 2 : 101ms 3 : 106ms	①:53ms ②:57ms ③:57ms	99% or more	1 : 162ms 2 : 215ms 3 : 220ms	99% or more	Sensors: 3(assumed) Extracted targets: 32 Distributed vehicles: 57
Limit test	Limitation of collection / distribution (UC1 ~ 4)			_	_	—	_	—	_	1 : 73ms 2 : 118ms 3 : 123ms	_	_		_	•Sensors: 3(assumed) •Extracted targets: 150 •Distributed vehicles:143
<u> </u>						_	1	,					* 1 · Describe the	CDF value	that is 100ms or less 1

Sensor type: 1) LiDAR, 2 long-range LiDAR, 3 radar

Communication delay / processing time: (①average, ②CDF95%, ③CDF99%

* 1: Describe the CDF value that is 100ms or less
 * 2: Describe the CDF value that is 1s or less

(2) Narrow area network: Roadside processing method 2 [Panasonic]

(2) Narrow area network: Roadside processing method 2 [Panasonic]

In the JARI Tsukuba test course, the following test environment was constructed, and device connection confirmation and KPI evaluation were carried out.

(2) Narrow area network: Roadside processing method 2 [Panasonic] Integrated processing details

- Identifies roadside radar detection information and pedestrian position information of ITS terminals and distributes them to vehicles as one target information
- > Take measures against time shift and position shift issues, and confirm that the correct answer rate KPI for integrated processing has been achieved.

Action item

In the case where a pedestrian / bicycle holding an ITS terminal approaches or crosses an intersection from outside the line of sight, the sensing result of the roadside radar detection area and the ITS terminal are identified and distributed to the vehicle as one target information.

Task:

The following issues arise due to the time shift and position shift of the radar sensor and ITS terminal, which are the information sources.

Issue(1): Seamless detection across sensor detection areas

Issue⁽²⁾: Same judgment of target information detected by different sensors

Time shift measures:

An NTP server synchronized with the time pulse of the GNSS receiver was constructed for each roadside infrastructure device, and a highly accurate time synchronization system was adopted.

Measures against misalignment:

COS similarity (direction similarity) is converted to features, weighted addition and likelihood are calculated in consideration of position and trajectory. Uses an identification method that enables flexible mapping considering radar occlusion.

Evaluation results

Integrated position correct answer rate, identification correct answer rate

Test ID	UC-3-1-0/ UC-3-3-0	UC-3-1-1/ UC3-3-1	UC-3-1-2/UC3-3-2			
Contents of test	Pedestrian	Bicycle	Pedestrian	Bicycle		
rate positio	100%	100%	100%	100%		
वा Identific ४ ation १ judgeme	98%	94%	97%	96%		

- * Integrated position correct answer rate, identification correct answer rate.
- * Extraction position error of 2 m or more and undetected data are excluded from aggregation.
- * Position correct answer rate: judged as correct answer if the position error is within 2 m.
- * Integrated correct answer rate: The rate at which the position error of data for which the same judgment is successful is within 2 m.
- * Identification correct answer rate: The rate at which the expected ITS terminal ID and radar ID are determined to be the same.

Consideration

- When the extraction position error is within 2 m, the integrated position accuracy rate is 100%, confirming the achievement of KPI.
- The same judgment correct answer rate is 90% or more, and it is confirmed that the amount of distributed data is reduced by integrating as one target information.
- In the roadside radar detection area, the position accuracy of the target is improved by utilizing the position information of the radar and integrating it with the ITS terminal information. Supplement)

Even if the position accuracy rate of extraction by the ITS terminal deteriorates due to the influence of the time-varying satellite arrangement (about 71%), the position accuracy rate improves by the integrated processing (about 80%).

(2) Narrow area network: Roadside processing method 2 [Panasonic] Distribution control details

- By the integrated processing, the target information that is duplicated by multiple sensors is integrated into one (as described above).
- Distributing only necessary information in consideration of the position and direction of travel of the support vehicle
- \rightarrow Achieved the reduction rate target (50% or more) by distribution control

Action item

Distribution control of information necessary to vehicles

(1) Method

Only the targets on the area inside the intersection required for the distribution destination vehicle will be distributed (the figure is limited to the area required for turning right)

(2) Distribution conditions

Simulate the virtual placement of targets that will be the peak traffic volume, and measure the reduction rate of the amount of data distributed.

No integration / no distribution control

With integration / distribution control

(Optimal distribution for vehicles entering the intersection from below

Detailed conditions

 $\boldsymbol{\cdot}$ Assuming that the processing target of integration is pedestrian / bicycle

•Targets in the intersection

32 vehicles, 8 pedestrians (ITS), 4 bicycles (ITS)

Targets before integration $32 + 8x^2 + 4x^2 = 56$

Targets after integration 32 + 8 + 4 = 44

Targets after distribution control (turn right) 11 + 4 + 2 = 17

Evaluation results

Communication traffic can be significantly reduced by distributing information according to the position and direction of travel of the vehicle, achieving a reduction of 50% or more of the target.

Evaluation	No integra	tion	With integration			
Pattern Item	<u>No</u> <u>distributi</u> <u>on</u> <u>control</u>	With distributi on control	No distributi on control	With distributi on control		
Average amount of communication data per distribution (bytes)	<u>6,218.0</u>	-	4,947.0	<u>2,069.0</u>		
Reduction rate(%)	tribute all inf tected at the ersection	ormation Dis inf on	Distribute only necessary information depending on the position and direction of travel of the vehicle			
		dir				

(Target symbol \Box : Vehicle, O: Pedestrian, \triangle Bicycle)

(2) Narrow area network: Roadside processing method 2 [Panasonic] Result summary

KPI verification (targeting a correct answer rate of 90% or more for extraction / integration and a processing delay of 1 second or less from collection to distribution)

- Confirmation of target value achievement under specific conditions by field verification
- Confirm communication / processing time and integration limit value performance under peak conditions on a general-purpose small PC with one narrow-area server
- Checking the limit performance when load balancing processing a narrow area server with multiple generalpurpose small PCs

	Typical UC sce	narios v	were selected a	nd des	scribed						* Include	s waiting	time for periodic processing) (250ms) of identification processing
Verifi	UC	Co	Correct answ	ver rat	e (position))	Communication	delay / pro	cessing t	ime*3					Remarks
catio n type	scenario	m mo n te st	Extraction	Pa ss / Fa il	Integrati on	P as s / Fa il	(1) Information source ⇒ Narrow area server	Pass / Fail * 1	(2)Ext ractio n	(3)Integration * Excluding distribution control, etc.	(4) Narrow area server ⇒ distribution destination	Pass / Fail * 1	Total (Information source ⇒ distribution destination)	Pass / Fail	
Field verifica	UC1-1-1														Not subject to evaluation
tion	UC2-1-2	0	1):95% or more	0	Not subject to integrati on	0	 14ms 19ms 24ms 	99% or more	-	 : 39ms : 58ms : 73ms 	1): 4ms (2): 5ms (3): 6ms	99% or more	1 : 218ms 2 : 302ms 3 : 330ms	99% or more	•Sensors:①1 •Extracted targets:1 •Distributed vehicles:1
	UC3-1-0	0	1:95% or more 2:90% or more	0	95% or more	0	 15ms 20ms 26ms 	99% or more	-	 : 48ms : 75ms : 89ms 	1): 4ms (2): 5ms (3): 5ms	99% or more	1 : 269ms 2 : 454ms 3 : 504ms	99% or more	•Sensors: 1, 21 •Extracted targets:1 •Distributed vehicles:1
	UC4-1-1														Not subject to evaluation
Peak	Peak scenario	0					1):51ms			1): 173ms 2): 209ms 3): 229ms	1)7ms	99% or more	① : 518ms		Simulation implementation •Extracted targets:44 •Integrated targets:12 •Distributed vehicles:57
Distrib ution limit	Peak scenario									Integration + di processing + dis time ① 499ms	stribution stribution				Distribution destination vehicles:73 Integration condition is peak scenario
Integr ation limit	Integration scenario									 : 242ms : 270ms : 302ms 					Simulation implementation Integrated targets: 40. Distributed vehicles: 1
Soncor tu	* 1: Describe the CDF value that is 100ms or less.														

②ITS communication terminal

Communication delay / processing time: (1)average, (2) CDF95%, (3) CDF99%

* 2: The one with the larger delay, the radar side is listed.

* 3: Reprocessing result based on actual measurement log.

21

(3) Narrow area network:Center processing method[Sumitomo Electric Industries]

(3) Narrow area network: Center processing method [Sumitomo Electric Industries]

In our test course, we built the following test environment and carried out device connection confirmation, simulation, and KPI evaluation.

(3) Narrow area network: Center processing method [Sumitomo Electric Industries]

- ➤ Integrate multiple sensor extraction information ⇒ Combine sensor areas in a wide range and provide detailed attributes
- Confirmed KPI achievement of correct answer rate of integrated processing

 $\text{UC1-1}: 0.94\text{m} \Rightarrow 0.65\text{m} \quad \text{UC3}: 0.69\text{m} \Rightarrow 0.10\text{m}$

(3) Narrow area network: Center processing method [Sumitomo Electric Industries'] Distribution control method

- > Distributing only the information required for the direction of travel of the support vehicle
- Confirmed achievement of KPI of traffic reduction rate by distribution control

Action item

Distribution control to vehicles limited to necessary information

<u>(1) Task</u>

When all traffic information is distributed, unnecessary information is included depending on the vehicle, which imposes an unnecessary load on the network and processing on the vehicle side.

(2) Countermeasure (Method / algorithm, etc.)

Evaluation results
 (1) Average traffic

(=)/					
Evaluation	No integra	tion	With integration		
pattern	<u>No</u> <u>distributi</u> <u>on</u> <u>control</u>	With distributi on control	No distributi on control	With distributi on control	
Average traffic per distribution vehicle (bytes)	<u>9,901.0</u>	1,933.3	7,933.0	<u>1,441.3</u>	

(2) Average traffic reduction rate

By distributing information according to the position and direction of travel of the vehicle, traffic can be significantly reduced, achieving a target reduction of 50% or more.

(3) Narrow area network: Center processing method [Sumitomo Electric Industries]

KPI verification (target: communication delay within 100ms, series processing time within 1 s, extraction / integration correct answer rate 90% or more)

- > Confirmation of KPI achievement of correct answer rate of extraction / integration by field verification
- Confirmation of KPI achievement of communication delay and series of processing time by field verification and simulation conditions assuming peak time
- > Confirmation of communication delay KPI achievement under simulation conditions of limit test

<collection data="" size=""> <distribution data="" size=""> ① Radar Approximately 0.5Kbyte / 100ms ① Header about 53 bytes / 100ms ② LiDAR Approximately 230Kbyte / 100ms ② Approximately 112 bytes / 100ms per target ③ Camera Approximately 230Kbyte / 100ms ⇒⇒ (① + (② * Number of target)) * Number of distributions</distribution></collection>														t of distributions	
Verifi catio	Verification No .(UC	Co m	Correct a (position)	nswer)	rate		Communicat	Communication delay / processing time							Remarks
n type	scenario)	mo n tes t	Extracti on	P a ss / F ai I	Inte grat ion	P ass/F ai	① Informati on source ⇒ Narrow area server	Pass /Fai I*1	2 Extraction Sim evalua	③ Integratio n ulation tion result	 ④ Narrow area server ⇒ Distributio n destinatio n 	Pass /Fai I*1	Total (Informati on source ⇒ Distributio n destinatio n)	Pass /Fai I *2	
Field valida tion	2-1 (UC1-1-1)		①:99% ②100%	0	100 %	0	1): 38ms 2): 54ms 3): 60ms	99. % or more	1 : 30ms 2 : 40ms 3 : 43ms	①:4ms ②:6ms ③:7ms	①:22ms ②:28ms ③:29ms	99. % or more	①:98ms ②:134ms ③:145ms	99. % or more	•Sensor: 10, 21 •Extracted target: 1 •Distributed vehicle: 1
	2-2-1 (UC2-1-1)	0	②100%	0	_	—	1): 40ms 2): 55ms 3): 61ms	99. % or more	1 : 29ms 2 : 38ms 3 : 42ms	①:1ms ②:2ms ③:2ms	1 : 21ms 2 : 26ms 3 : 28ms	99. % or more	①:95ms ②:128ms ③:140ms	99. % or more	•Sensor: ②1 •Extracted target: 1個 •Distributed vehicle: 1
	2-3 (UC3-1-0)	0	②100% ③:99%	0	100 %	0	1): 43ms 2): 64ms 3): 72ms	99. % or more	1 : 70ms 2 : 81ms 3 : 85ms	①:5ms ②:8ms ③:9ms	1 : 21ms 2 : 26ms 3 : 26ms	99. % or more	① : 143ms ② : 186ms ③ : 200ms	99. % or more	•Sensor: @1, ③1 •Extracted target: 1 •Distributed vehicle: 1
	2-4-1 (UC4-1-1)		②:97%	0	_	—	1): 43ms 2): 63ms 3): 71ms	99. % or more	1 : 36ms 2 : 49ms 3 : 55ms	① : 211ms ② : 221ms ③ : 226ms	①:21ms ②:27ms ③:28ms	99. % or more	①:316ms ②:368ms ③:389ms	99. % or more	•Sensor: @1 •Extracted target: 1 •Distributed vehicle: 1
Peak assu mptio n	3-8 (UC2~3)	0		—		—	 : 44ms : 67ms : 77ms 	99. % or more	(①:70ms ②:81ms ③:85ms)	1 : 89ms 2 : 141ms 3 : 163ms	1 : 21ms 2 : 27ms 3 : 30ms	99. % or more	1 : 233ms 2 : 319ms 3 : 349ms	99. % or more	•Sensor: @2, @2 •Extracted target: 32 •Distributed vehicle: 57
Limit test	4-5 (UC1~4)		_				 : 43ms : 66ms : 75ms 	99. % or more	_	_	①:33ms ②:51ms ③:58ms	99. % or more	_	_	•Sensor: ①2, ②3, ③3 •Extracted target: 96 •Distributed vehicle: 143

Sensor type: ① Radar, ② LiDAR, ③ Camera

Communication delay / processing time: ①average, ② CDF95%, ③CDF99% * Reflect the latest measurement results after emulator verification * 1: Describe the CDF value that is 100ms or less.

* 2: Describe the CDF value that is 100ms of less

(4) Medium area network [NTTDOCOMO]

(4) medium area network [NTT DOCOMO]

- In Odaiba and Kanagawa, we built the following test environment and carried out three-stage verification
 A commercial network was used as a mobile phone network, and communication delays were evaluated as 5G
- (Sub6, millimeter wave) and LTE, respectively.

(* 1) "Wi-Fi STATION SH-52A" was used as a 5G router.

(* 2) docomo Open Innovation Cloud: A cloud platform with MEC's characteristics of achieving low latency and high security by installing it in a mobile phone network.

(4) medium area network [NTT DOCOMO] ① Communication delay verification

- KPI verification (communication delay: 100ms or less) ⇒ [achieved]
- Regarding the communication delay at 5G (mmW, Sub6), the average value, median value, CDF [95% or 99% tile value], etc. are within the range of several tens of ms, and it can be judged that the KPI has been achieved.
- > Consideration on the influence of communication traffic by general users is described on the next page.

(4) medium area network [NTT DOCOMO] ① Communication delay verification (supplementary explanation)

- As shown in the simple simulation below, the communication delay of the cellular system remains flat up to about 50% of the maximum capacity of the load (cell throughput) on the base station, and increases linearly up to about 80%.
- Since the load on the base station by the medium area network examined this time is sufficiently small with respect to the maximum capacity, it can be considered that the communication delay is not affected by the communication traffic within the range of the assumed UC.

(4) medium area network [NTT DOCOMO] 2 Independent medium area verification

- KPI verification (communication delay from medium area server to distribution destination: within 100ms) ⇒ [Achieved]
- As the amount of distributed data increases, MQTT packets are divided and transmitted, but the delay of the wireless communication part is confirmed to reach the target within(***10**)ms(***1**).

Even when the number of distribution destinations increased, it was confirmed that the delay of the wireless communication part achieved the target within 100ms, but the processing time of the medium area server will increase, so consideration must be given to the design.

Category	Verification variation	 (1) Integration / Distribution in medium area server [Processing time] 	(2) medium area server⇒MQTT broker [Processing time]	(3) Processing in MQTT broker [Processing time]	(4) MQTT broker ⇒ dOIC transmission [Processing time]	(5) Wireless communicatio n time [Processing time]	(6) In-vehicle unit split packet reception [Processing time]	Total ((1)-(6))
Distri (da	200m x 200m (3 targets)	 99.8ms 2201.7ms 3243.9ms 	 17.6ms 88.7ms 3118.2ms 	 1.0ms 2.1ms 2.6ms 	 1.0ms 1.7ms 2.0ms 	 8.8ms 19.7ms 24.2ms 		①128.2ms ②314.0ms ③390.9ms
ibution r ita volur	500m x 500m (16 targets)	 92.1ms 2146.8ms 3169.5ms 	1 23.2ms 2132.2ms 3177.4ms	 3.0ms 7.2ms 8.9ms 	 1.7ms 3.5ms 4.2ms 	 17.5ms 81.9ms 3108.5ms 	1 9.5ms 2 81.2ms (* 1) 3110.9ms	①146.8ms ②452.7ms ③579.5ms
range me)	1km x 1km (64 targets)	 99.8ms 2201.7ms 3243.9ms 	① 41.9ms ②261.8ms ③353.0ms	 11.1ms 12.2ms 39.5ms 	 4.3ms 11.4ms 14.3ms 	 38.1ms 68.0ms 80.4ms 	① 54.2ms ②201.3ms ③262.2ms	①249.3ms ②775.4ms ③993.4ms
z	1 vehicle	1 99.8ms 2201.7ms 3243.9ms	 17.6ms 88.7ms 3118.2ms 	 1.0ms 2.1ms 3.6ms 	 1.0ms 1.7ms 2.0ms 	 8.8ms 19.7ms 24.2ms 		①128.2ms ②314.0ms ③390.9ms
umber of desti	22 vehicles (Reference value)		① 87.9ms ②338.0ms ③441.6ms	①116.1ms ②456.1ms ③597.0ms	 1 53.5ms 2216.0ms 3283.3ms 	 30.1ms 42.7ms 47.9ms 		
f distribution nations	44 vehicles (Maximum number of vehicles that one base station can accommodate)	①270.6ms ②842.7ms ③1079.8ms	 4519.1ms 211380.0ms 314222.6ms 	1) 453.7ms 2)1124.4ms 3)1402.2ms	①212.4ms ②581.1ms ③725.8ms	 32.0ms 52.6ms 61.2ms 	[Usage Guide] (1) Average value (2) CDF 95% (3) CDF 99%	① 5507.1ms ②13980.7ms ③17491.6ms

(4) medium area network [NTT DoCoMo] ② Independent medium area verification

- KPI verification (communication traffic reduction rate: 50% or more) ⇒ [Achieved]
- IFor the "Narrow area server → Medium area server" section, implement a "collection control function" that limits the target information collected from the narrow area server to only the information used for the assumed UC, and confirm the effect.
- ➢ ②For the "medium area server → Distribution destination vehicle" section, implement a "distribution control function" that narrows down the distribution range (distribution target information) according to the traveling speed of the distribution destination vehicle, and confirm the effect.

[Measurement conditions (assumed environment)]

• Narrow area server: 4 units per 1km ^ 2 • Target information: 52 targets per 1 narrow area server, 16 of which are stagnant targets

6			BEFORE	<u>.</u>	AF	TER		
teg ory	Evaluation iter	m	No collection of function (exa 60km / h	control mple: 1)	With collect function 60kr	ction control (example: n / h)	the second s	
	Number of targets to be distributed (data volume)		208 Target (a 54.3 kbyt	pprox. e)	64 Target (kb	approx. 13.6 yte)	and the second sec	
1	Communicatio traffic reduction	on rate	Standard va	alue	69.	2 %		
	Operation check		_		0		©Es MET	sri Community N T/NASA, USGS
Са	Ca Evolution		BEFORE			AFTER	ł	
teg item		P(er Municipality 27km ^ 2 * 1)	60km / h (1km ^ 2)		30km / h (5 500m	00m x	Minimur (200m x

DEsri Community Maps Contributors, GSI, Esri, HERE, Garmin, INCREMENT P, IETI/NASA, USGS

Са	Evoluation	BEFORE	BEFORE AFTER						
teg ory	item	Per Municipality (27km ^ 2 * 1)	60km / h (1km ^ 2)	30km / h (500m x 500m)	Minimum area (200m x 200m)				
	Number of targets to be distributed (data volume)	5616 Target (approx. 1.43 Mbyte)	208 Target (approx. 54.3 kbyte)	52 Target (approx. 13.6 kbyte)	9 Target (approx. 2.4 kbyte)				
2	Communicatio n traffic reduction rate	Standard value	96.30 %	99.07 %	99.84 %				
	Operation check	_	0	0	0				

(4) medium area network [NTT DOCOMO] ③ medium area/Narrow area joint verification

- \triangleright KPI verification (a series of processing time in the medium area: within 3 seconds) \Rightarrow [Achieved]
- The data is under limited conditions (* 1), but the processing is completed within a few hundred milliseconds.
 If the amount of distribution data or the number of distribution destinations is increased, the processing time
 - of the medium area server will increase as shown on the previous page, so design consideration is required.

Ca te go ry	UC scenario	(1) Extraction from information sources [Processin g time]	(2) Information source ⇒ Narrow area server [Communicati on delay]	(3) Integration in narrow area server [Processing time]	 (4) Narrow area server ⇒ Medium area server [Communication delay] 	 (5) Integration / distribution in medium area server [Processing time] 	(6) Medium area server ⇒ Distribution destination [Processing time](*2)	Total ((1)-(6))
Ok i	UC M1-1-1 (No stagnation)	①50.4ms ②56.0ms ③61.0ms	 ①11.1ms ②29.0ms ③31.0ms 	①48.9ms ②89.0ms ③99.0ms	①33.2ms ②62.2ms ③74.2ms	①28.0ms ②86.6ms ③110.9ms	 ①15.8ms ②24.9ms ③28.6ms 	 187.4ms 347.7ms 404.7ms
	UC M1-1-2 \sim 1-1-3 (Route change) (*3)	①50.2ms ②55.0ms ③60.0ms	①11.1ms ②28.0ms ③31.0ms	①57.2ms ②94.0ms ③100.0ms	①26.2ms ②44.5ms ③52.1ms	①21.6ms ②57.5ms ③72.3ms	 ①10.3ms ②17.2ms ③16.3ms 	 176.6ms 296.2ms 331.7ms
Pa na so ni c	UC M1-1-1 (No stagnation)	①14.0ms ②21.0ms ③27.0ms	①20.2ms ②33.5ms ③41.0ms	①37.4ms ②49.0ms ③51.0ms	①29.5ms ②39.8ms ③44.1ms	①24.1ms ②119.3ms ③158.7ms	 ①16.4ms ②15.8ms ③19.9ms 	 141.6ms 278.4ms 341.7ms
	UC M1-1-3 (Route change)	①12.9ms ②18.0ms ③20.0ms	①20.5ms ②33.5ms ③49.0ms	①33.4ms ②47.0ms ③53.0ms	①27.8ms ②38.4ms ③42.7ms	①17.7ms ②93.4ms ③124.8ms	 ①17.2ms ②27.9ms ③32.3ms 	 129.5ms 258.2ms 321.8ms
	UC M2-3 (Departure of vehicle parked in the street)	①13.0ms ②19.0ms ③20.0ms	①20.2ms ②33.5ms ③41.0ms	①32.4ms ②46.0ms ③48.0ms	①26.3ms ②35.2ms ③38.9ms	①21.0ms ②124.0ms ③166.7ms	①19.7ms ②25.2ms ③27.9ms	 132.6ms 282.9ms 342.5ms

(* 1) In the JARI test course, the log of the case where one target information was distributed to one distribution destination vehicle is played back in the 5G environment of Odaiba.

(* 2) Including communication delay (→ Refer to "Verification result 1" for evaluation of communication delay itself), and time until all received messages are received at the distribution destination

(* 3) Since the stopped target is not detected, it is carried out without integrated processing.

[Usage Guide] ① Average value

2 CDF 95%

③ CDF 99%

(5) Comprehensive confirmation

- For the target vehicle, we conducted verification assuming a series of UC scenarios, such as supporting route changes in the medium area and supporting right turns at intersections in the narrow area.
- In the process of UC scenario, measure the series of processing time (KPI is within 3 seconds) of collection \Rightarrow integration \Rightarrow distribution
- Validate the entire system architecture examined and constructed and carry out KPI evaluation

Driving route in Odaiba

- Distribute information on the stagnation of narrow-area extraction vehicles via 5G
- · Receive target information (stagnation information) with a medium area support vehicle
- 2 Narrow area scenario

After receiving ① above, turn left at the intersection and continue straight ahead.) Receive information on narrow areas at the Aomi 1-chome intersection

(The information captured by the narrow area sensor installed on the roadside is received by the medium area support vehicle)

(5) Comprehensive confirmation ① Medium area use case scenario

- KPI verification (a series of processing time in the medium area: within 3 seconds) \Rightarrow [Achieved]
- Processing is completed within a few hundred milliseconds, although it is under the condition of one intersection and one distribution destination in Odaiba.
- Similar to the above-mentioned medium area verification, if the amount of distribution data (including the number of intersections) and the number of distribution destinations are increased, the processing time (5) and (6) of the medium area server will increase by up to 1 second, but it will be within 3 seconds.
- In addition, it is expected that transmission interruption of about 400ms will occur when switching base stations (* 1), but even if this is taken into consideration, it will be within 3 seconds.

Ca te go ry	UC scenario	(1) Extraction from information sources [Processin g time]	(2) Information source ⇒ Narrow area server [Communicati on delay]	(3) Integration in Narrow area server [Processing time]	 (4) Narrow area server ⇒ Medium area server [Communicati on delay] 	 (5) Integration / distribution in medium area server [Processing time] 	(6) medium area server ⇒ Distribution destination [Processing time] (* 4)	Total ((1)-(6))
Ok i (* 2)	UC M1-1-1 (No stagnation)	①37.4ms ②46.0ms ③53.0ms	①0.6ms ②1.0ms ③2.0ms	①49.7ms ②99.0ms ③101.0ms	①28.9ms ②80.9ms ③102.4ms	①20.1ms ②62.7ms ③80.5ms	①80.0ms ②43.9ms ③49.2ms	①216.7ms ②333.5ms ③388.1ms
Pa na so ni c (* 3)	UC M1-1-1 (No stagnation)	ITS (1)1.4ms (2)2.0ms (3)2.0ms Radar (1)13.4ms (2)20.0ms (3)23.0ms	ITS (1)3.0ms (2)4.0ms (3)5.0ms Radar (1)2.1ms (2)3.0ms (3)4.0ms	①48.0ms ②72.0ms ③78.0ms	①48.0ms ②71.7ms ③81.5ms	①32.9ms ②71.6ms ③94.0ms	①8.7ms ②43.9ms ③58.4ms	ITS (1)142.0ms (2)265.2ms (3)318.9ms Radar (1)153.1ms (2)282.2ms (3)338.9ms
								7

(* 1) In the case of LTE base station switching (handover), which is an anchor band.

Regarding switching between 5G and LTE, LTE communication will continue, so transmission interruption will not occur.

(* 2) Medium area UC \Rightarrow Narrow area UC scenario.

(* 3) Narrow area pedestrian detection scenario.

(* 4) Including communication delay (\rightarrow Refer to "Verification result 1" for evaluation of communication delay itself), and time until all received messages are received at the distribution destination.

<u>[Usage Guide]</u> ① Average value

2 CDF 95%

③ CDF 99%

(5) Comprehensive confirmation ② Narrow area use case scenario

- KPI verification (a series of processing time in a narrow area: within 1 second) \Rightarrow [Achieved]
- In collaboration with each company, measure narrow-range distribution (medium area distribution is also carried out at the same time) in the test environment of Odaiba.
 - Confirmed that the communication quality in the communication area is 99% or more of the packet arrival rate [Oki Electric Industry]
 - Improve the software processing time and time synchronization method from the time of JARI and confirm the improvement [Panasonic]

C at eg or y	UC scenario	(1) Extraction from informatio n sources [Processi ng time]	(2)Informatio n source ⇒ Narrow area server [Processing time]	(3) Integration in narrow area server [Processing time]	 (4) Narrow area server ⇒ Distribution destination [Processing time] 	Total ((1)-(4))
O ki	UC N3-1-0 \sim 3-1-3 (Crossing the intersection)	①37.4ms ②46.0ms ③53.0ms	①0.6ms ②1.0ms ③2.0ms (*1)	①49.7ms ②99.0ms ③101.0ms	①10.0ms ②22.0ms ③28.0ms	①97.7ms ②168.0ms ③184.0ms
Pa na so ni c	UC N3-1-0 ~3-1-3 (Crossing the intersection)	ITS (1)1.3ms (2)2.0ms (3)2.0ms Radar (1)13.4ms (2)20.0ms (3)23.0ms	ITS (for each target) ①3.0ms ②4.0ms ③6.0ms Radar (multiple batches) ①1.9ms ②3.0ms ③5.0ms	①32.2ms ②74.0ms ③91.0ms	 12.4ms 22.0ms 33.0ms (*2) 	①236.7ms ②330.0ms ③382.0ms (*2) (*3)

(* 1) Information source (sensor) and narrow-area server are directly connected

(* 2) Aggregate excluding delays of 500ms or more due to shielding (due to the inability to secure sufficient installation height due to the simple installation of roadside communication equipment)

(* 3) Includes waiting time for periodic processing (250ms) of identification processing

(Usage Guide) ① Average value ② CDF 95% ③ CDF 99%

Summary (proposals, future tasks, etc.)

Item	Narrow area network	medium area network			
Achievement status of KPI	 Achieved all KPIs within the range of assumed UC and prerequisites this time Confirmed the usefulness of the system architecture considered, albeit under specific applications and conditions 	 Achieved all KPIs within the range of assumed UC and prerequisites this time Confirmed the usefulness of the system architecture considered, albeit under specific applications and conditions 			
Knowledge obtained in this research and development	 Confirm that there is no large difference in the series of processing times between the roadside processing method and the center processing method. Acquire knowledge on measures against time shift and position shift when integrating multiple sensor information. In addition, it is possible to provide highly accurate and seamless information to the vehicles to be supported without duplication, and confirm the effects of shielding and improving position accuracy. 	 The load on the medium area network is limited within the range of the assumed UC and prerequisites this time. On the other hand, the increase in application processing time due to the increase in the number of distributions and the amount of distribution data is large, and it is necessary to consider the design for practical use. 			
Recommendations based on this research and development (Details will be described in the implementation guidelines)	 Common collection I / F in consideration of dealing with a wide variety of information sources Controlling the distribution target according to the position and route of the distribution destination vehicle 	 Integration of narrow area network into mid area network and standardization of I / F for distribution to vehicles Control the distribution target according to the traveling speed of the distribution destination vehicle, etc. 			
Future tasks	 It is necessary to consider and verify further support for UC on the roadside and expansion of sensing targets. In addition, demonstration experiments including cooperation with automated vehicles and dynamic maps are required. 	 ✓ It is necessary to examine and verify a comprehensive medium network that includes not only the target information this time but also other traffic environment information. ✓ In addition, a large-scale demonstration experiment in the field (several tens of vehicles) is required. 			

37

EOF