Strategic Innovation Program (SIP) 2nd period Autonomous driving (the scalability of systems and services) Approach development for improving an autonomous driving validation environment in virtual space

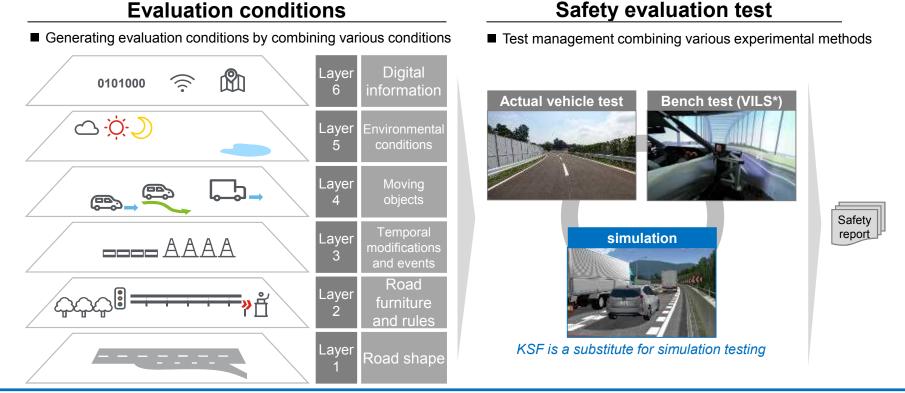
Weather Forecast

For Validation & Verification Methodology

* AD : Automated Driving DIVPTM Consortium

Agenda

- Project Design
- FY2019 outcome
- Validation framework study

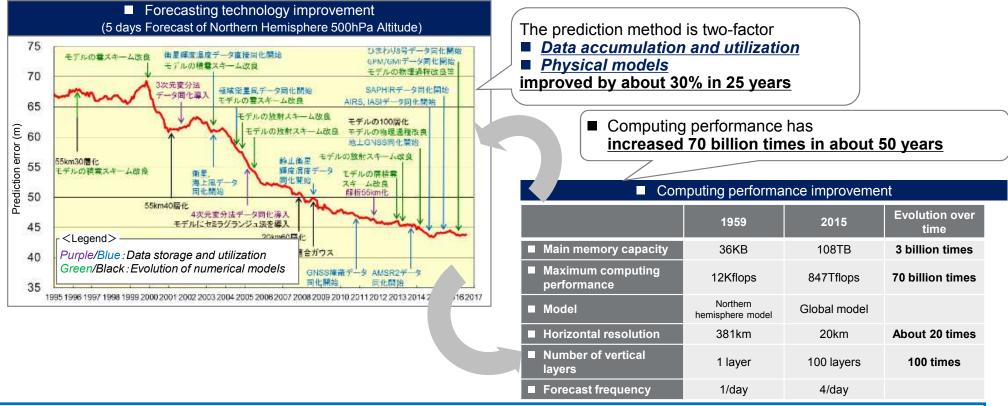

About the Cross-ministerial Strategic Innovation Promotion Program (SIP) This is a program for achieving science, technology and innovation as a result of the Council for Science, Technology and Innovation exercising its headquarters function to accomplish its role in leading science, technology and innovation beyond the framework of government ministries and traditional disciplines. The program strives to promote research and development in a seamless manner from the basic research stage to the final outcome by endeavoring to strengthen cooperation among industry, academia and government under the strong leadership of the Program Director (PD) **Project Design**

DIVP[™] Consortium

Definition of AD safety evaluation system, multi test method combination for huge test scenario for safety assurance is important for the promotion for social acceptance

AD safety evaluation system

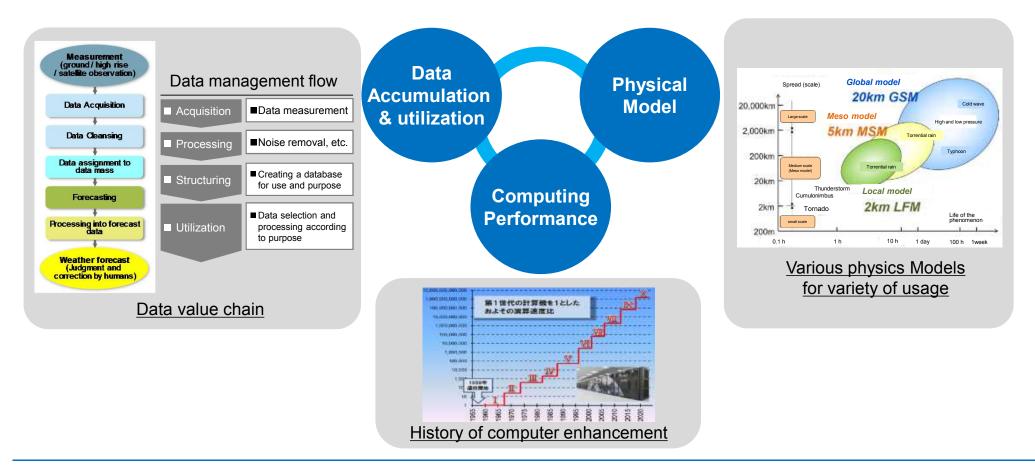
Evaluation conditions

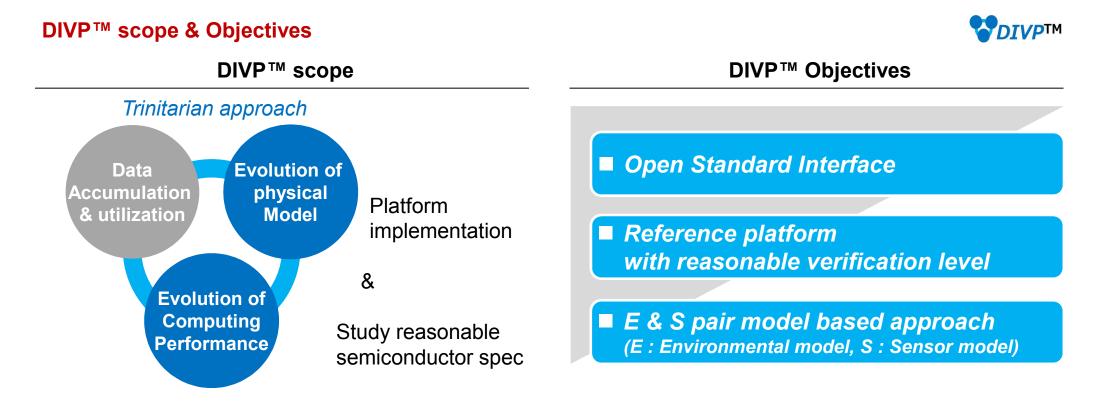


Expansion of test scenario availability & Test results consistency are required for methodology standardization

* VILS : Vehicle in the Loop Source: Mitsubishi Precision Co. Ltd. DIVP[™] Consortium

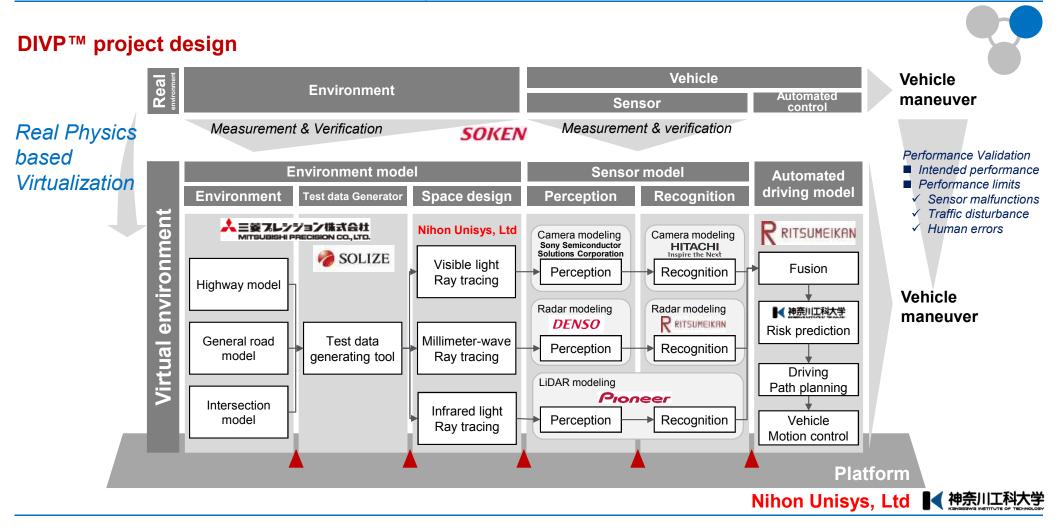
Referring Weather forecast, simulation based physics forecasting, Forecasting technology and computing performance improvements are mandatory required


History of weather forecasts

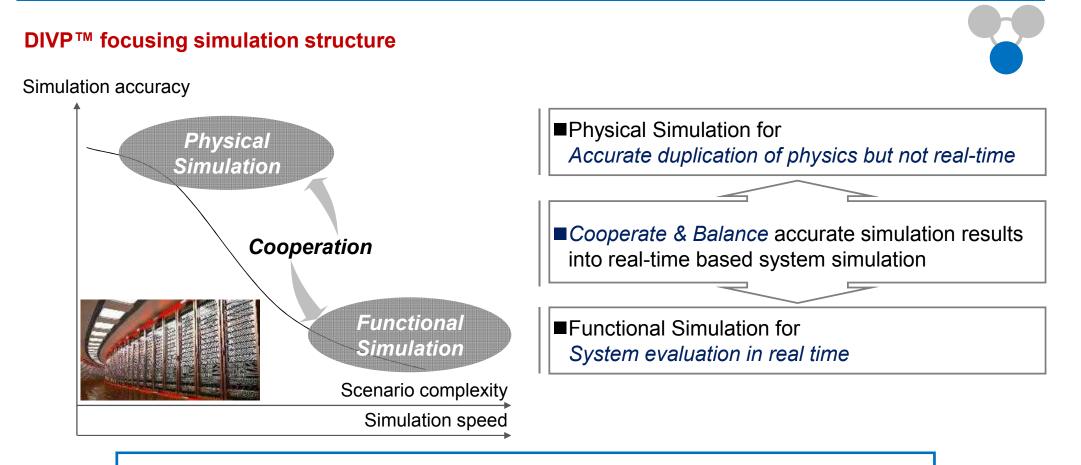

Trinitarian approach with "Data accumulation", "Physical modeling" and "Computing performance" improvement has to be managed as long term based

[Reference] Weather forecast has been enhanced over the long term through a Trinitarian approach

Trinitarian approach

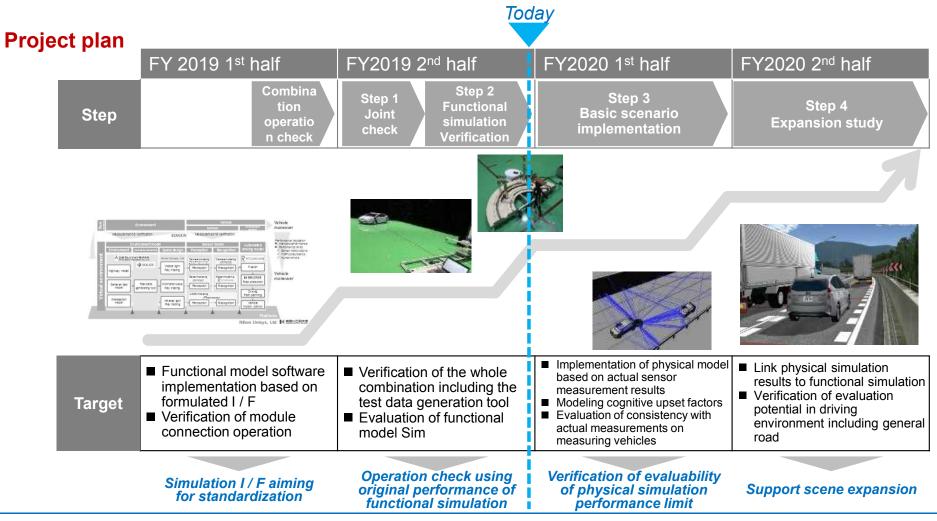


DIVP[™] scope covers "Physical Model" & "Computing Performance" in Trinitarian approach



With project outcome DIVP[™] is to Improve Simulation based AD Safety validation for Consumer acceptable Safety assurance

Designed research theme, Duplicate from Real to Virtual, and Verification of correlation level by 10-exparts as DIVP[™] Consortium

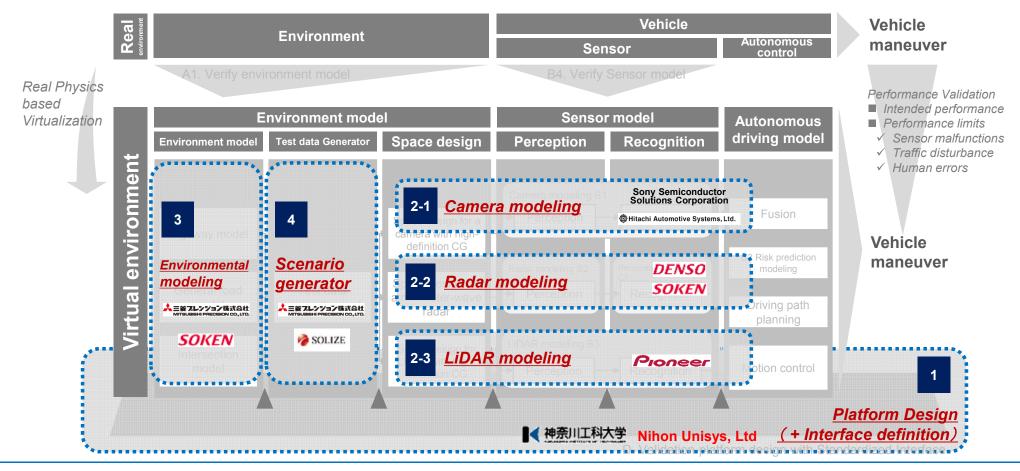


Study Physical & Functional Simulation platform, and cooperate those for multiple user needs in various Industry player

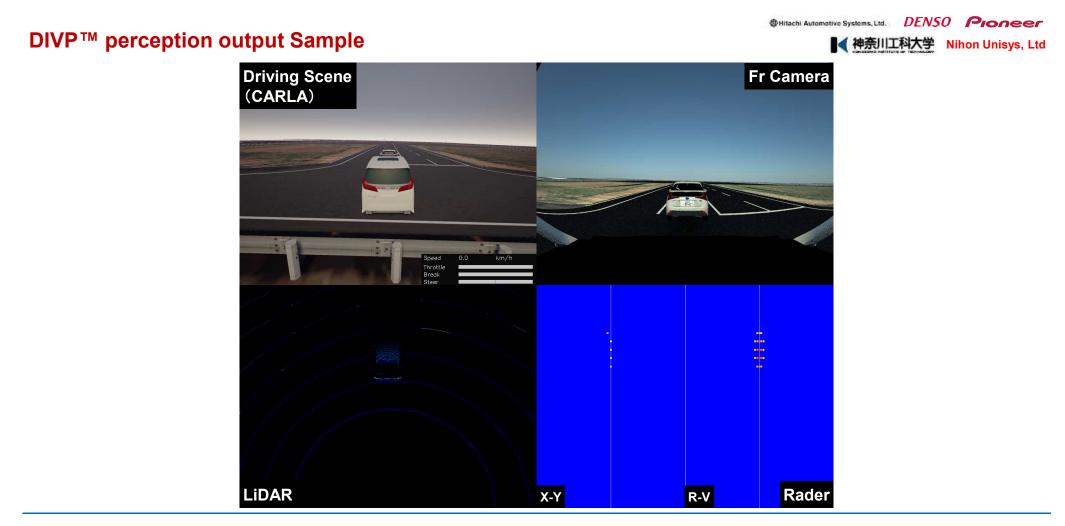
Leading global collaboration in AD safety verification using simulation

Through the step by step approach, develop Functional & Physical simulation and study for further opportunity

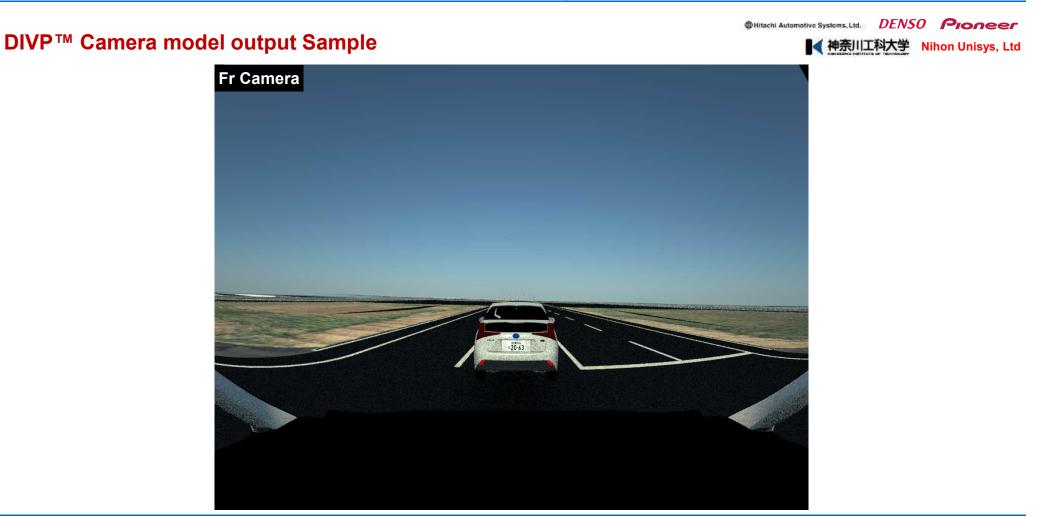
Source: SOKEN. INC, Mitsubishi Precision Co. Ltd.


DIVP[™] Consortium

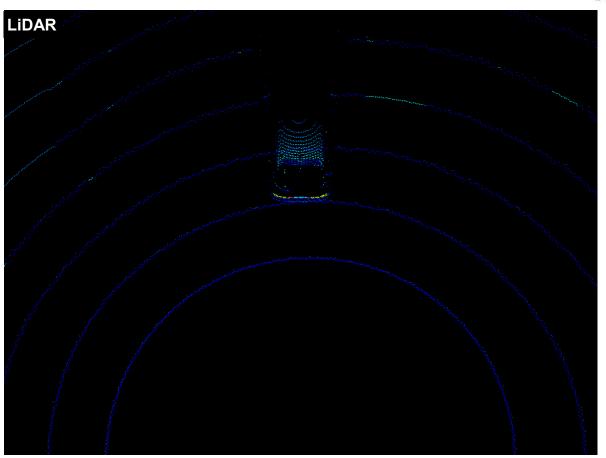
FY 2019 outcome


DIVP[™] Consortium

In FY2019, 4-major research have been progressed, Platform design, Sensor modeling, Environmental modeling and Scenario generator


Outcome overview

DIVP[™] Consortium



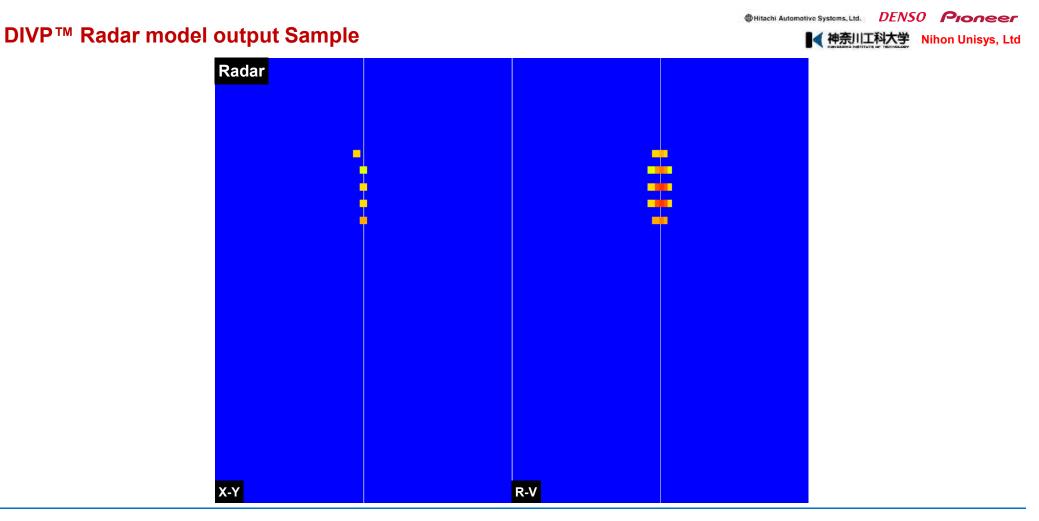
Source: Copyright © CARLA Team 2019. DIVP[™] Consortium

Source: Copyright © CARLA Team 2019. DIVP[™] Consortium

DIVP™ LiDAR model output Sample

Source: Copyright © CARLA Team 2019. DIVP[™] Consortium

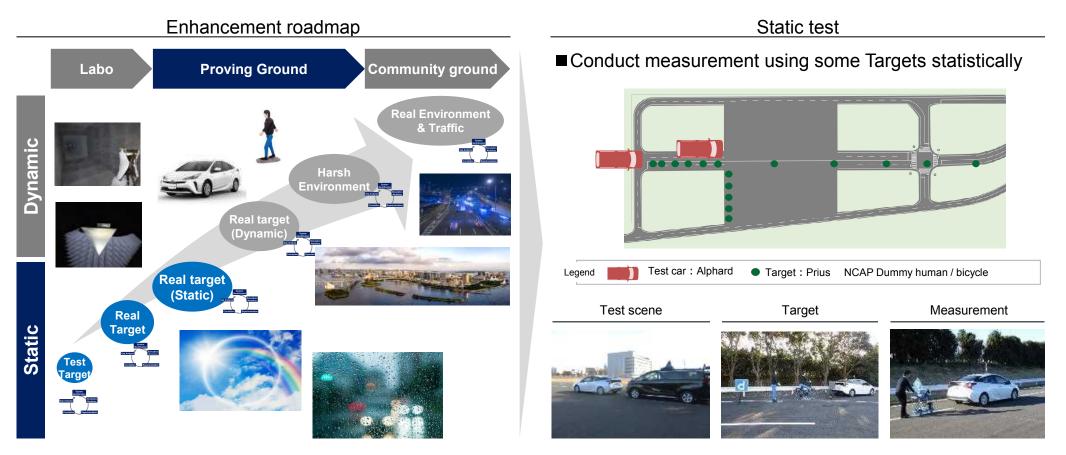
FY2019 Year-end report 15


Pioneer

Nihon Unisys, Ltd

DENSO

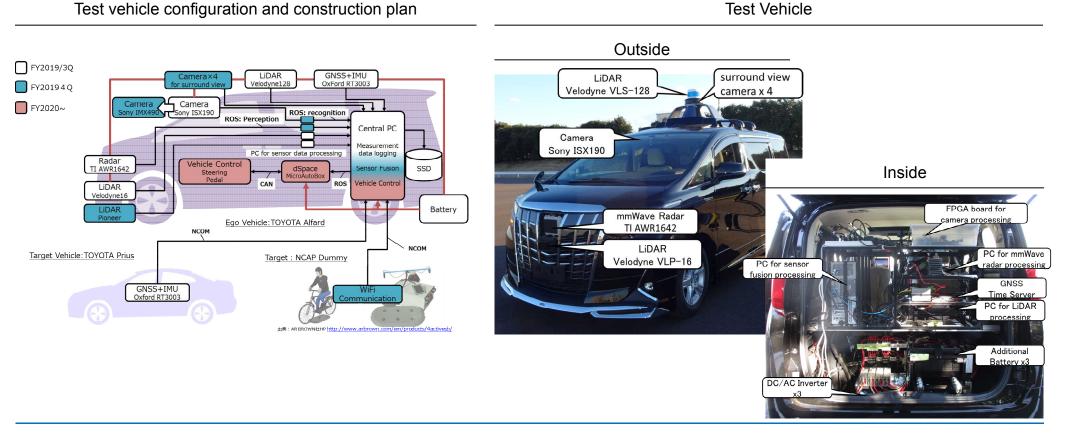
▲ 神奈川工科大学


@Hitachi Automotive Systems, Ltd.

Conducted Static Data measurement in Real-PG for Sensor consistency verification

Verification framework

SOKEN



Source : DENSO,INC DIVP[™] Consortium

Constructed Data measurement vehicle, has accurate GNSS/IMU & WiFi system for accurate location management

Test Vehicle

SOKEN

Source : SOKEN, INC DIVP[™] Consortium

Performs sensor data measurement in static test and driving test, and provided measurement data for verification with simulation results.

Sensor data measurement

SOKEN

Scene of sensor data measurement (Static test)

Scene of sensor data measurement (Driving test)

Source : SOKEN, INC DIVP™ Consortium

Verified sensor output based consistency in Real/Virtual-PG, results each Sensor topics, Environmental modeling & Verification procedure for next step

Static test results

		Camera (Recognition)	HITACHI Inspire the Next		Rader (Perception)	DENSO		LiDAR (Perception)	
Test environment	Output from real camera			30 20 10 Sensor position					
	Output from camera model			E 10 -10 -20 -30 0 10	 Actual measurement Simulation 20 30 40 50 60 RangeY[m] 		\overrightarrow{N} -1 -2 -3 3 2	Legend Sim point could Test results 1 0 -1 -2 -3 0 Y-axis[m]	
	Evaluation index	inspection result		Evaluation index	inspection resul	t	Evaluation index	inspection result	
S	Target size	Nearly OK		Distance	Nearly OK		Distance	Sufficient consistency @ short range	
Results	Target distance	Nearly OK		Angle	ngle Nearly OK		Size(width)	Sufficient consistency @ short range	
	Target type	ОК	ОК		NG		Number of points	Confirm errors caused by target reflectance and transparent characteristics	

Checked recognition output based consistency Next step is to duplicate environmental model could affecting consistency error Computer road are counter measured Next step is to more precise modeling millimeterwave propagation physics Verified Target distance and Size(width) are sufficient level in short range. Next step is to reevaluate with proper target reflection characteristics.

Source: Hitachi Automotive Systems, DENSO,INC, PIONEER SMART SENSING INNOVATIONS CORPORATION DIVP™ Consortium

From existing simulation benchmarks, competitiveness is based on the possibility of precise sensor simulation based on verification by actual measurement.

Benchmark result of Camera

Classification	Phenomena	DIVP™	CarMaker 8.1.0	PreScan 2019.3	VIRES VTD 2.2.0
Source	General light source (vehicle lamp, etc.)	Ø	0	0	0
Source	Radiance of solar	Ø	0	0	0
Source	Radiance of sky	0	×	Δ	0
Source	Indirect light	0	0	×	×
Optics	Reflection, diffusion, transmission on the object surface	Ø	Δ	Δ	Δ
Optics	Aging of the object surface	(asphalt) ◎	×	0	Δ
Optics	Fouling	×	×	Δ	×
Propagation	Scattering (Participating medium)	O(fog)	×	×	×
Sensor	Effect of vehicle dynamics	O	\triangle	Δ	Δ
Sensor	Effect of temperature characteristic	×	×	×	×
Sensor	Aging of the sensor	×	×	×	×
Sensor	Lens distortion	0	0	0	0
Sensor	Lens flare	×	×	×	×
Sensor	Ghost	×	×	×	×
Sensor	Fouling (windshield)	O (raindrop)	Δ	×	×

※ Limit the range that can be completed within 2020 by prioritizing DIVP[™] functions based on frequency and criticality

transmission,

Prescan only supports reflection, VTD unsupports a moving objects.

③ Only DIVP[™] fully supports vehicle behavior.

DIVP[™] Consortium

■ < 神奈川工科大

^{©:} supported (with actual verification) O: supported (with no verification) Δ : partially supported ×: unsupported 1 (2) 3 Items that shows the superiority of DIVP[™] Only DIVP[™] is to verify the actual $(\mathbf{1})$ machine. (2) CarMaker only supports reflection and

From existing simulation benchmarks, competitiveness is based on the possibility of precise sensor simulation based on verification by actual measurement.

Benchmark result of Radar

Classification	Phenomena	DIVPTM	CarMaker 8.1.0	PreScan 2019.3	VIRES VTD 2.2.0	
Source	Other vehicle light source (interference)	O	×	×	×	2
Optics	Reflection, diffusion, transmission on the object surface	Ø	Δ	Δ	Δ	3
Optics	Aging of the object surface	O(asphalt)	×	×	×	> (1)
Optics	Fouling	(raindrop)	×	×	×	
Optics	Phase / polarization change during reflection	Ø	×	×	×	4
Optics	Diffraction	×	×	×	×	
Propagation	Multi reflection / transmission	O	\triangle	Δ	×	5
Propagation	Scattering (attenuation), interference in space	Ø	0	0	×	
Propagation	Doppler	Ø	0	0	×	Item
Propagation	Micro-Doppler	Ø	×	0	×	1
Sensor	Own light source (reproduction of modulation method)	Ø	0	0	×	
Sensor	Effect of vehicle dynamics	Ô	Δ	Δ	Δ	
Sensor	Effect of temperature characteristic	×	×	×	×	
Sensor	Aging of the sensor	×	×	×	×	ل (4)
Sensor	Fouling	×	×	×	×	4
Sensor	Internal reflection	×	×	×	×	

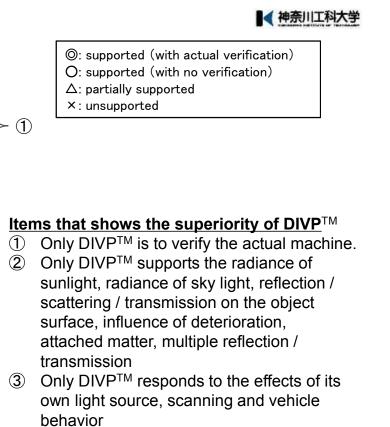
X Limit the range that can be completed within 2020 by prioritizing DIVP™ functions based on frequency and criticality

▲ 神奈川工科大学

©: supported (with actual verification)
 O: supported (with no verification)
 A: partially supported
 X: unsupported

Items that shows the superiority of DIVPTM

- Only DIVP[™] is to verify the actual machine.
- ② Only DIVP[™] is to support interference.
- ③ Only DIVP[™] supports reflection, scattering and transmission
- ④ Only DIVP[™] responds to the effects of extraneous matter and phase / polarization changes during reflection
- ⑤ Only DIVP[™] supports multiple reflection / transmission

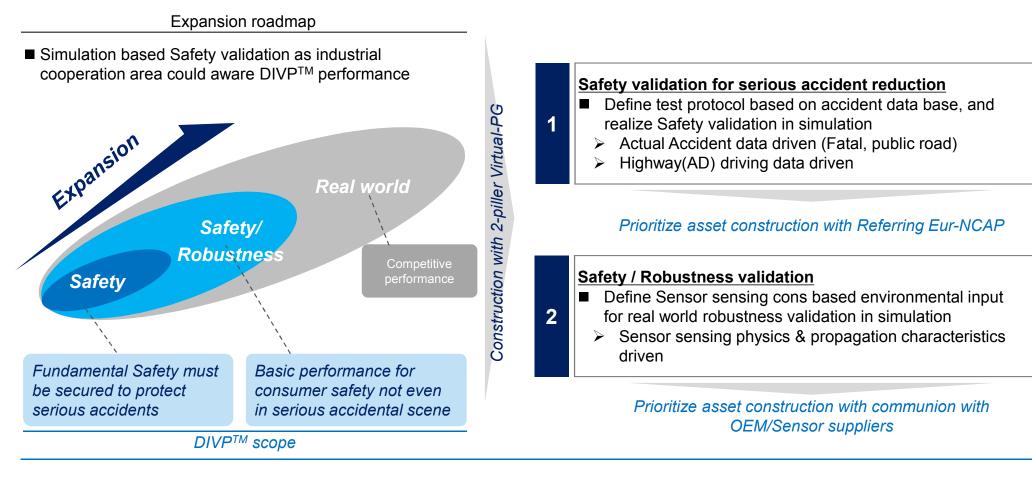

DIVP[™] Consortium

From existing simulation benchmarks, competitiveness is based on the possibility of precise sensor simulation based on verification by actual measurement.

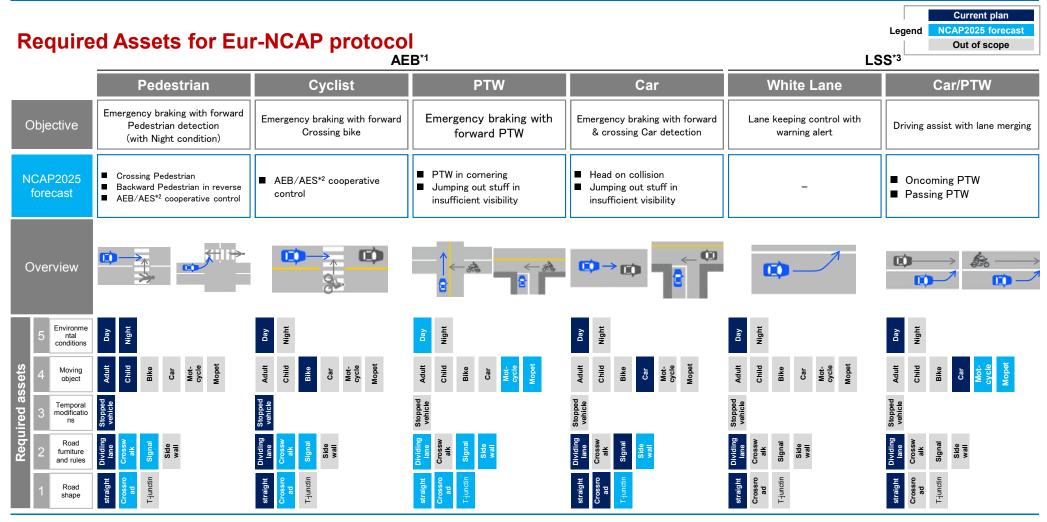
Benchmark result of LiDAR

Classification	Phenomena	DIVP TM	CarMaker 8.1.0	PreScan 2019.3	VIRES VTD 2.2.0	
Source	Other vehicle light source (interference)	×	×	×	×	\sum
Source	Other source (halogen lamp)	×	×	×	×	
Source	Radiance of solar	Ø	×	×	×	
Source	Radiance of sky	Ø	×	×	×	
Optics	Reflection, diffusion, transmission on the object surface	Ø	Δ	Δ	Δ	2
Optics	Aging of the object surface	(asphalt)	×	×	×	
Optics	Fouling	(raindrop)	×	×	×	
Propagation	Multi reflection/transmission	Ø	Δ	×	Δ	
Propagatio n	Scattering in space (attenuation)	Ø	×	0	×	
Sensor	Own light source	Ø	×	×	×	
Sensor	scanning	Ø	×	×	×	3
Sensor	Effect of vehicle dynamics	Ø	Δ	Δ	Δ	
Sensor	Effect of temperature characteristic	×	×	×	×	\square
Sensor	Aging of the sensor	×	×	×	×	
Sensor	Fouling	(raindrop)	×	×	×	4

X Limit the range that can be completed within 2020 by prioritizing DIVP[™] functions based on frequency and criticality



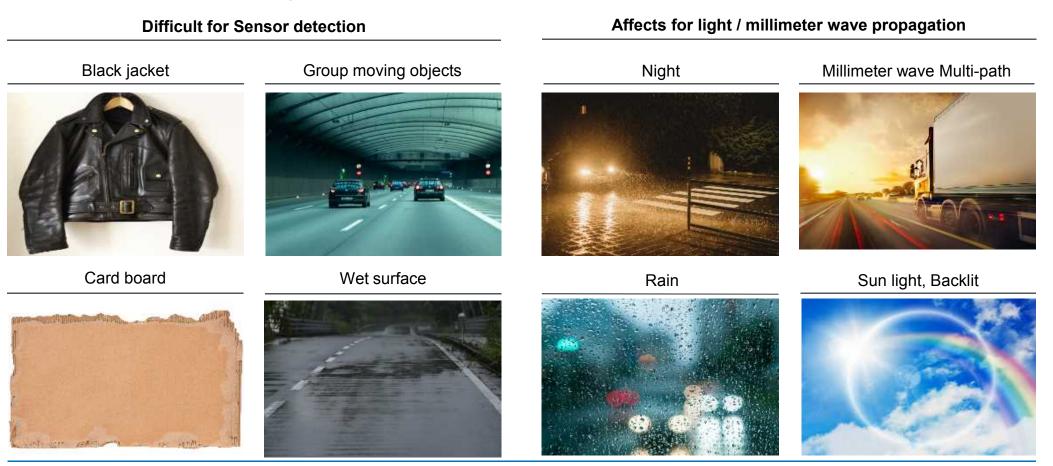
④ Only DIVP[™] responds to the effects of sensor deposits


DIVP[™] Consortium

In FY2020 besides sensor simulation accuracy improvement, proceed Virtual-PG(Proving ground) construction and realize part of NCAP protocol in Simulation

Virtual-PG expansion strategy

[1 Safety validation for serious accident reduction] Structured assets based on Eur-NCAP, current & NCAP2025 for Virtual-PG construction

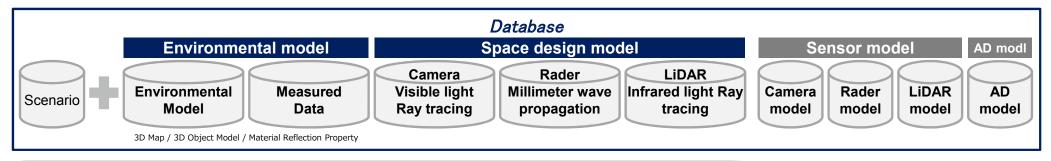


*1 AEB : Automatic Emergency Braking, *2 AES : Automatic Emergency Steering, *3 LSS : Lane Support System / PTW : Powered Two Wheeler

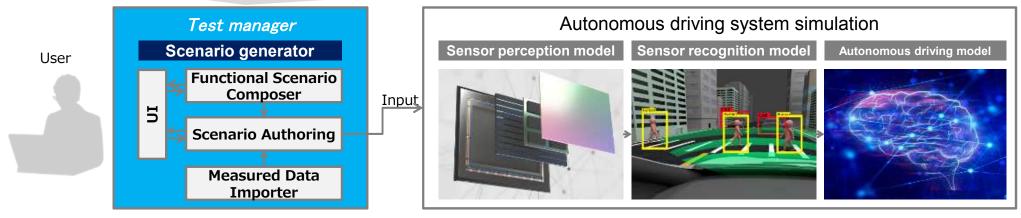
DIVP[™] Consortium

[2 Safety / Robustness validation] Sensor sensing mechanism & Light / Millimeter wave propagation modeling in Virtual-PG

Example for Sensor sensing weakness



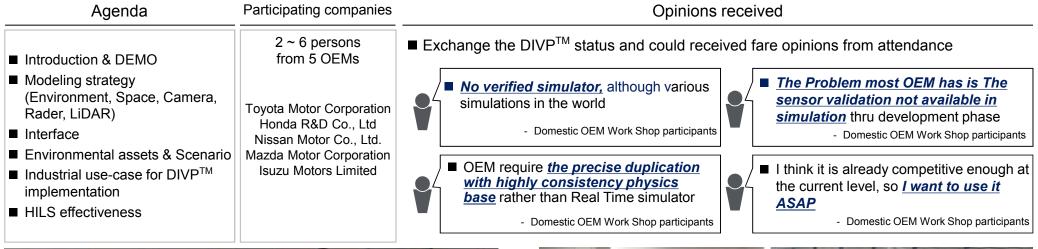
DIVP[™] Consortium


Database Accumulates and Utilizes "Environmental & Space design models" and Test manager for Simulator usability are the Key for DIVP[™] successful implementation

DIVP™ Ecosystem

Nihon Unisys, Ltd Alexa Mitsuaishi Precision co, uto 🍻 SOLIZE

Generate input conditions based on evaluation scenarios



Accelerate Data base structuring & Scenario generator design toward DIVP[™] ECO-system

Source : Sony Semiconductor Solutions Corporation $\mathsf{DIVP^{TM}}$ Consortium

Industrial needs verification thru Workshop with 5-major domestic OEMs on January 23rd /24th

Work shop with OEMs

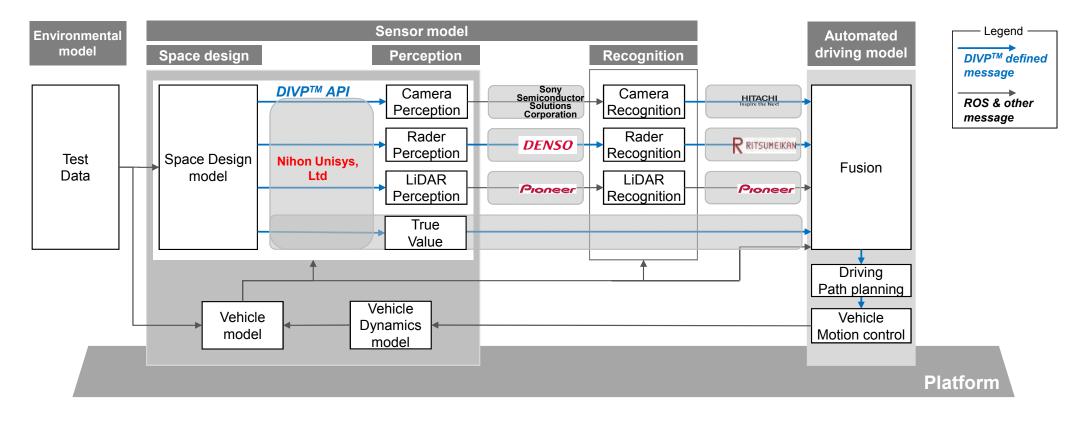
DIVP[™] Consortium

FY 2019 outcome

1. Interface design

2. Sensor modeling

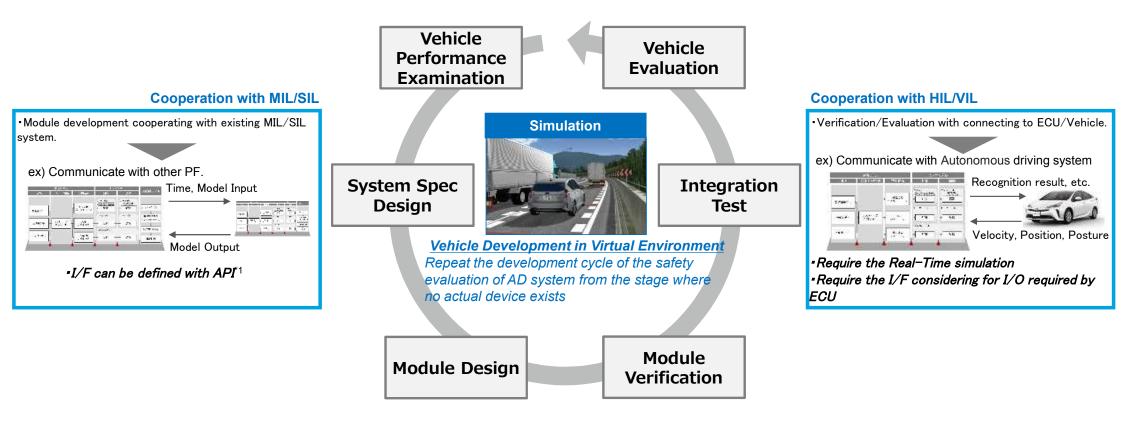
3. Environmental modeling


4. Scenario generator

DIVP[™] Consortium

Released 1st Draft I/F spec, Utilizing the feature of ROS for possibility to easily evaluation of communication specifications between models

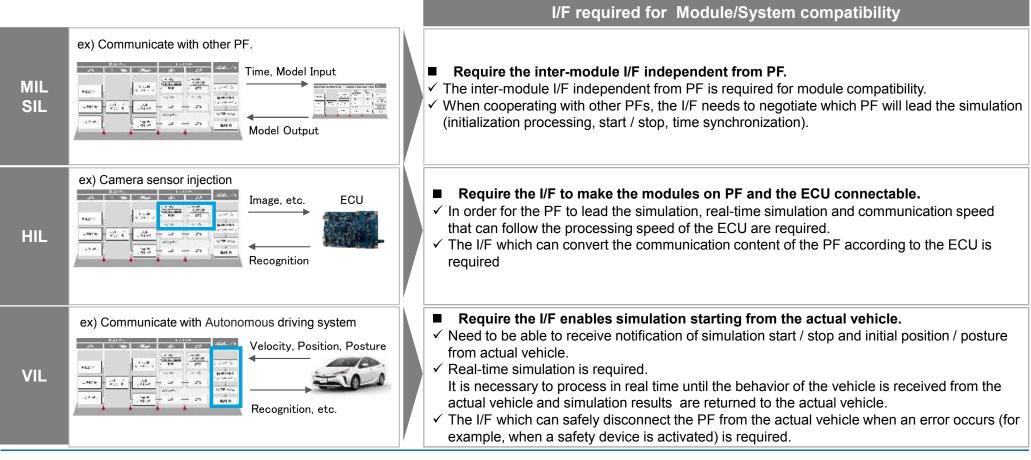
DIVP™ Interface design


^{*} Johou Systems Kougaku (JSK) Laboratory The University of Tokyo

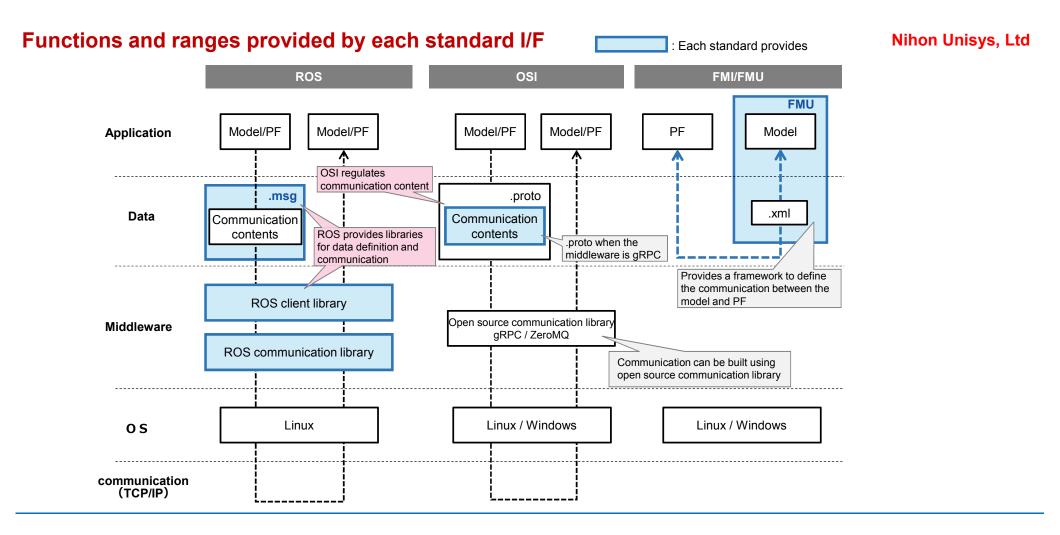
DIVP[™] Consortium

Assuming practical use, we consider the requirements for simulation platform.

Cooperation with existing simulation system


Nihon Unisys, Ltd

Assume the system configuration for each simulation system and consider the required I/F, Standardized and PF-independent I/F is required for Module/System compatibility


Simulation System

Nihon Unisys, Ltd

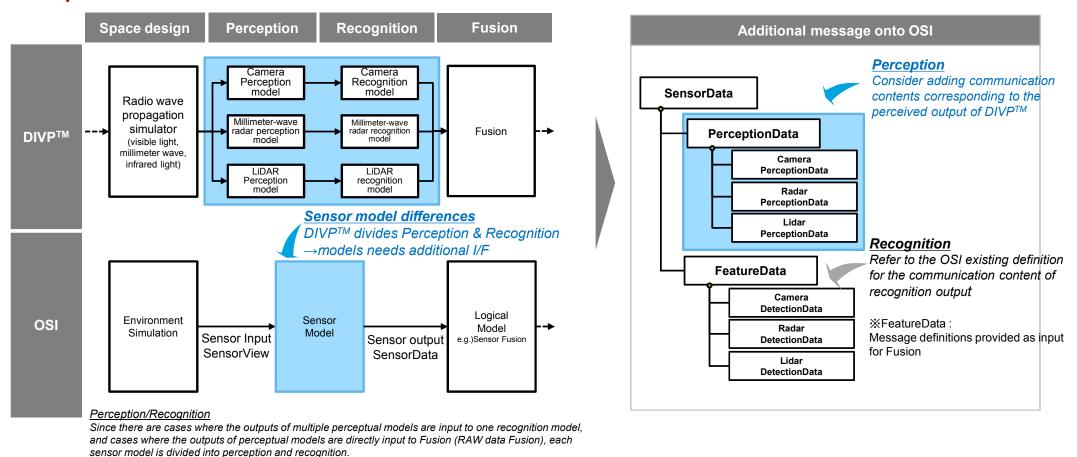
Source : Mitsubishi Precision Company, Limited, Kanagawa Institute of Technology DIVPTM Consortium

For future international standardization, we select base specifications according to the purpose of DIVP[™] from existing standard I/F.

DIVP[™] Consortium

Investigate and compare major simulation I / Fs with a view to future standardization, and select an architecture that will be the axis for studying communication contents and communication methods

Comparison of each standard I / F in sensor model


Nihon Unisys, Ltd

ltem	ROS	OSI *1	FMI/FMU
Communication	Δ	0	×
content *Sensor perception, recognition, fusion	Insufficient for AD system sensors (Originally for robots)	Sensor model and fusion communication contents are defined	Not defined
	0	×	0
Communication method	Provides middleware for communication using TCP / IP	 Not stipulated Communication is performed using an open source library such as ZeroMQ. 	■ Define library API calls
Trend	 TierIV, Apex.Al adopted. It is easy to use and is used by various companies and universities. 	 ■ Transferred from Pegasus, Germany to ASAM. ■ Adopted by a national pro near the German DIVPTM 	 It is often used in multiple model simulations. CarMaker also supports.

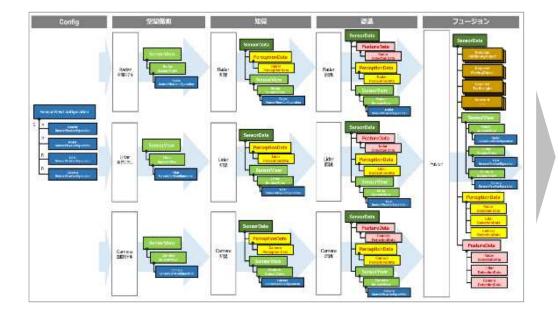
*1:OSI https://opensimulationinterface.github.io/osi-documentation/

DIVP[™] Consortium

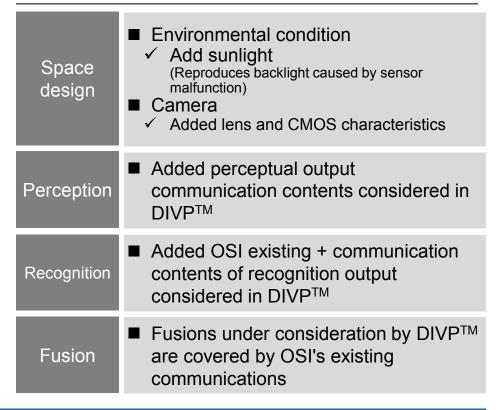
Compared with DIVP[™] and OSI sensor model I / F, confirmed correspondence and considered adding communication contents

Comparison of DIVP[™] and OSI sensor model I / F

DIVP[™] Consortium


FY2019 Year-end report 35

Nihon Unisys, Ltd


We examined the relationship between spatial rendering, sensor model, and fusion communication content when using OSI as the axis.

Association of communication contents

Nihon Unisys, Ltd

Items to consider for OSI communication contents

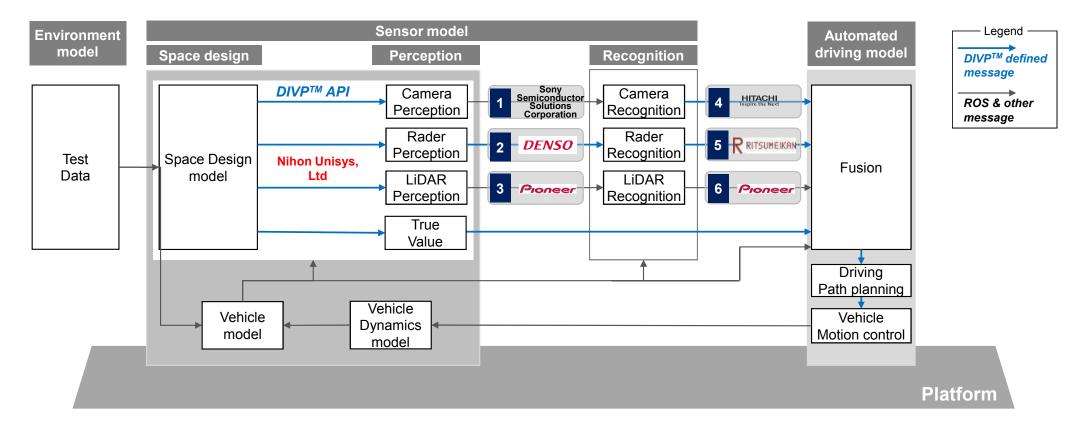
DIVP[™] Consortium

Convert and use communication contents from OSI format to ROS format to enable communication with ROS

Conversion of communication contents

■ From the viewpoint of standardization, communication contents are defined in OSI format When using with DIVPTM, convert to communication content in ROS format

Nihon Unisys, Ltd


■Accuracy and speed

- In OSI, length, speed, acceleration, etc. are defined with double precision (double type)
 - → Communication speed decreases, data volume increases *When compared with single precision (float type)
- Consider single precision (float type) if it is considered sufficient
 → Convert from double precision to single precision when converting formats

1st Draft I / F spec utilizing general ROS I / F has been released, and operation evaluation will be promoted

DIVP™ Interface design

Nihon Unisys, Ltd

^{*} Johou Systems Kougaku (JSK) Laboratory The University of Tokyo

DIVP[™] Consortium

RAW output CMOS image sensor

Sony Semiconductor Solutions Corporation

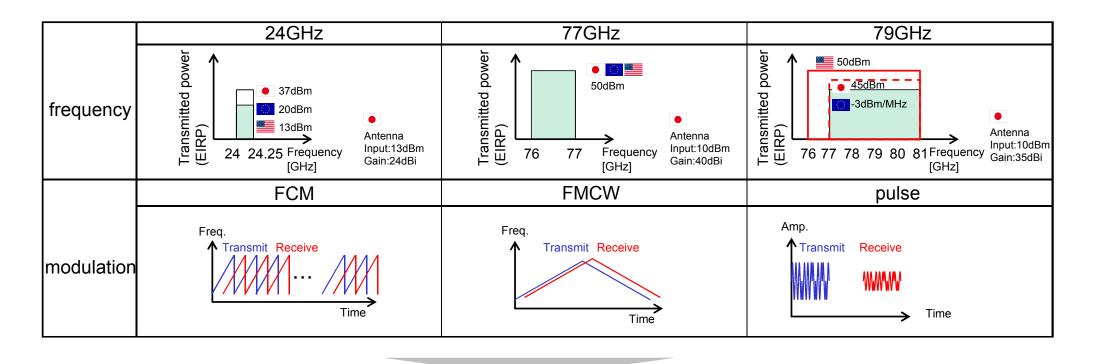
Corresponds to the trend of simultaneous output of multiple images (combination of (1) to(4) is possible. Image size may be different) (1)HDR composition (compressed / uncompressed) *HDR compression 12~16bit, HDR uncompressed 16~24bit

(2)No HDR composition

(3)HDR partial composition (compressed / uncompressed)

(4)Metadata output

ROS message	Туре	Description				
image_out	float32[]	Processed RAW data (e.g. one HDR output, multiple exposure images, etc. Image size may be different among images)				
pre_embedded_data byte[]		Meta data 1 (vender specific: e.g. register values applied to image_out) per output image				
post_embedded_data byte[]		Meta data 2 (vendor specific: e.g. statistics such as histogram of output image) per output mage				
RAW output format (each image) image_o	ut 🖛 Imag	embedded_data (Register setting value information, etc.) ge_out (RAW output data) _embedded_data (Statistics, etc.)				


HDR: High Dynamic Range DIVP[™] Consortium

[Millimeter-wave Radar perception input]

Interface specifications compatible with various millimeter-wave radars based on industry trends

Millimeter-wave Radar perception input

DENSO

Compatible with all bands and modulation methods approved by the Radio Law of each country

2

² [Millimeter-wave radar perception output] Current in-vehicle radar does not output perceptual output, but specifies perceptual output in view of Raw Data Fusion

Millimeter-wave radar output I/F

DENSO

Output	Symbol	Unit	accuracy	Reason for decision
Target number	target_num	—	uinit32	Define a type that can handle the number of peaks handled by in-vehicle millimeter-wave radar
Distance	range	m	float32	Values handled by in-vehicle millimeter-wave radar are in range: 0 to several hundred meters resolution: 1um, and a type that can handle it is defined.
Velocity	velocity	m/s	float32	 The values handled by the in-vehicle millimeter-wave radar are in range: ± 0 to 83.3 m / s (500 km / h) resolution: 0.01 m / s (0.036 km / h), and a type that can handle them is defined.
Azimuth	theta	rad	float32	 The values handled by the in-vehicle millimeter-wave radar are in range: ± 0 to 1.57 rad (90 deg) resolution: 0.0000175 rad (0.01 deg), and a type that can handle it is defined.
Elevation	phi	rad	float32	Same as above
intensity	power	dB	float32	Defines a type that can handle the dynamic range handled by invehicle millimeter-wave radar

[LiDAR perception input]

Interface specifications compatible with various type of LiDARs based on industry trends

LiDAR perception input

Types of LiDAR optical system

Categorize LiDAR optical systems in terms of modulation scheme, laser wavelength, and scanning type

modulation type	pulse modulation	CW modulation	
wave length	IR		
scanning metod			
	motor scan	MEMS scan	flash type

Supported LiDAR types

- Pulse modulation method is supported.
 (CW modulation method is not supported)
- Laser wavelength supports near-infrared light including 900nm band and 1500nm band.
- Scanning method supports motor method, MEMS method, flash method.

Pioneer

[LiDAR perception model output]

Interface specifications compatible with various LiDARs based on industry trends

LiDAR perception model output

Pioneer

Output 3D point cloud

Time stamp, intensity and position in the three-dimensional orthogonal coordinate system are defined as the elements of each point (angle and distance, which are general LiDAR output parameters, are expressed as positions).

- Each LiDAR specific parameter is added as an option.
- Regarding the data size of each output parameter, a sufficient area for expressing the performance of the existing LiDAR is secured in both resolution and range.

	Туре	resolution	Maximum value
X [meter]	Float	6 significant digits (1mm from 1,000 meters can be expressed)	3.402823e+38
Y [meter]	Float	6 significant digits	3.402823e+38
Z [meter]	Float	6 significant digits	3.402823e+38
intensity	Float	6 significant digits	3.402823e+38
Time stamp [nsec]	int64	1nsec	About 580 years

3

[Camera recognition output] Interface specifications based on industry trends

Camera recognition output

4

HITACHI Inspire the Next

The configuration was studied with reference to the sensor interface discussed in the international standard ISO / TC22 SC31 WG9 (Sensor data interface for automated driving functions). Also refer to commercially available Sims (Carmaker, etc.)

Application : Camera sensor that detects visible light (camera sensors that detect or radiate components from objects, such as IR and TOF, are excluded)

Recognition result	Unit	Туре	resolution	Remarks
Horizontal size on screen	pixel	uint16	1	
Vertical screen size	pixel	uint16	1	
Lateral position	m	float32	0.01	Right-handed side coordinate system
Vertical position	m	float32	0.01	Right-handed side coordinate system
Height position	m	float32	0.01	Right-handed side coordinate system
Horizontal center coordinates	pixel	uint16	1	
Vertical center coordinates	pixel	uint16	1	
Vertical relative distance	m	float32	0.01	Right-handed side coordinate system
Lateral relative distance	m	float32	0.01	Right-handed side coordinate system
Туре	-	uint8	-	1: Mini car / 2: Ordinary car / 3: Truck / 4: Bus / 5: Motorcycle (including moped) / 6: Bicycle 7: Car (light distribution) / 8: Motorcycle (light distribution) / 9: Bicycle (light distribution) / 10: Other vehicles / 101: Adults / 102: Children / 103: Other pedestrians / 201: Signs / 202: Road structure / 203: Moving objects such as animals / 204: Other targets

[Millimeter-wave radar recognition output] Filter perceptual output and output the result of clustering process

Millimeter-wave radar recognition output

♦ Regarding the data size of the output parameters, a sufficient area for expressing the performance of the existing radar is secured in both resolution and range.

	Туре	resolution	Maximum value
position [meter]	float32	Equivalent to perception	3.402823e+38
Bearing [degree]	float32	Equivalent to perception	3.402823e+38
Relative speed [meter/second]	float32	Equivalent to perception	3.402823e+38
Relative speed bearing [degree]	float32	Equivalent to perception	3.402823e+38
intensity [db]	float32	Equivalent to perception	3.402823e+38
width [meter]	float32	Equivalent to perception	3.402823e+38

5

[LiDAR recognition model output]

Interface specifications using multiple expressions based on industry trends

LiDAR recognition model output

Pioneer

- Compatible with the following two methods
 - Detected objects are expressed as Bounding Box (3D position / azimuth / size), its attribute label (car, pedestrian ...), and score.
 - An expression method that assigns an attribute label to each point of LiDAR perception model output
- Regarding the data size of the output parameters, a sufficient area for expressing the performance of the existing LiDAR is secured in both resolution and range.

	Туре		Maximum value
Bounding Box position [meter]	Float[3]	6 significant digits (1mm from 1,000 meters can be expressed)	3.402823e+38
Bounding Box Bearing [degree]	Float[4]	6 significant digits	3.402823e+38
Bounding Box Size [meter]	Float[3]	6 significant digits	3.402823e+38
Lavel	int32	_	-
Score	Float	6 significant digits	3.402823e+38

6

FY 2019 outcome

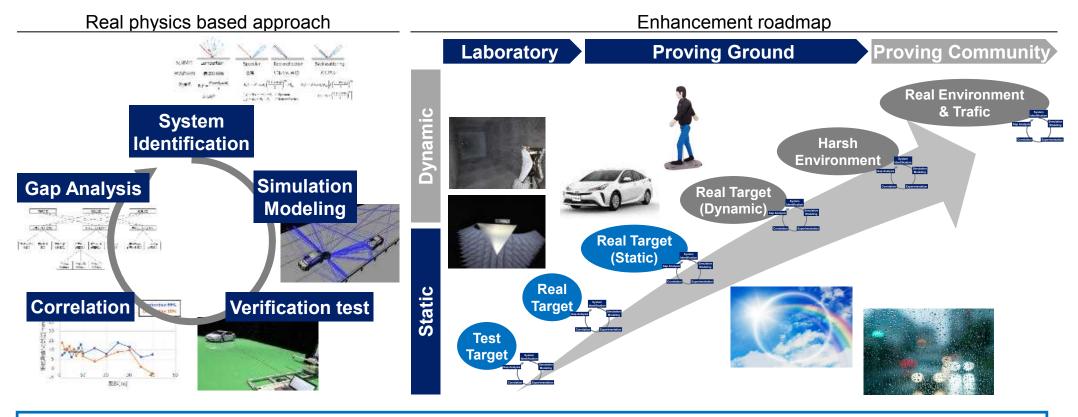
1. Interface design

2. Sensor modeling

3. Environmental modeling

4. Scenario generator

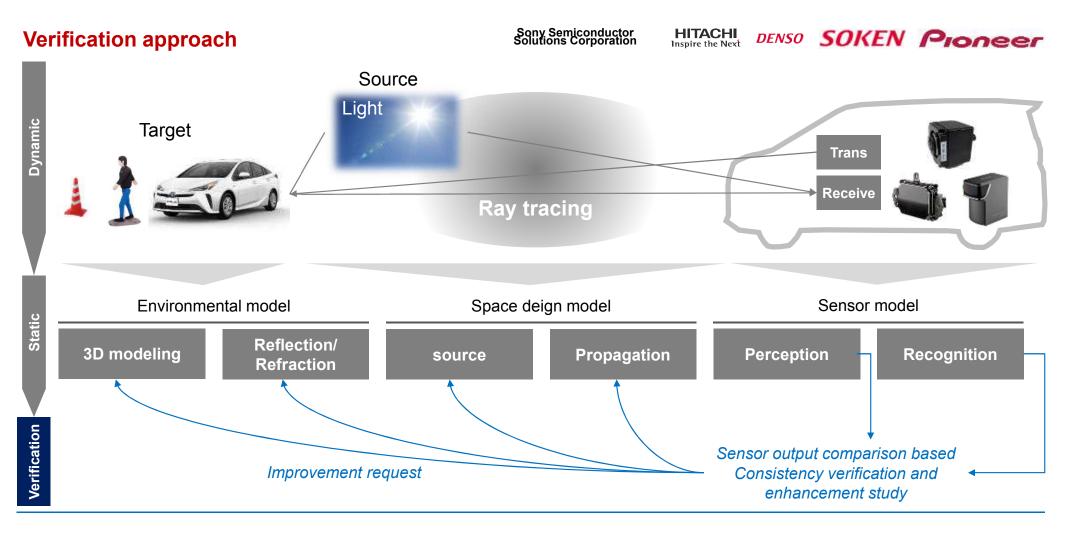
DIVP[™] Consortium


Simulation model based on mathematical model based on principles, and verification of consistency by comparison between experiment and simulation on sensor output

How to proceed with modeling

Steps	Implementation content	Implementation steps		
Step1	 Real physics modeling ✓ Mathematical modeling of physical 	Understanding each sensor principle		
	phenomena in the real world✓ Interface design	Function assignment of each part Interface design		
Step2	 Real physics based simulation model ✓ Simulation modeling of mathematical 	Simulation model design		
	model✓ Competitive advantage design	DIVP [™] superiority design		
Step3	 Verification & Validation ✓ Verification of consistency between Virtual vs Actual 	Basic operation verification		
	 Verification of extrapolation possibility based on Verified modeling 	Extended operation verification		

While expanding the PDCA cycle in modeling, expand the possibility of evaluating target objects from stationary objects to dynamic objects and from labs to test courses to general roads

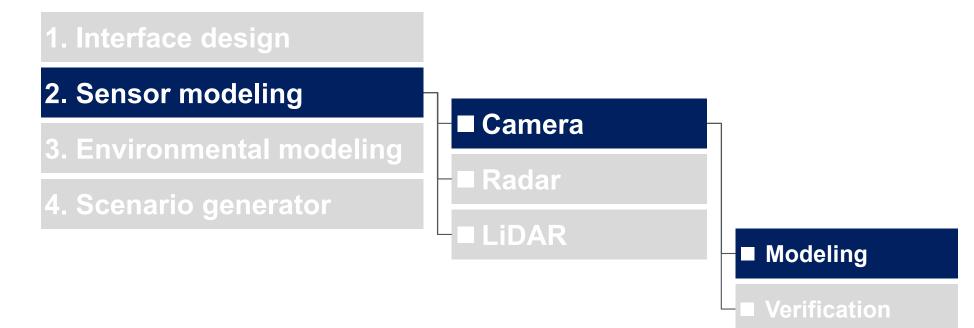

Modeling Flame work

Verification of PG x actual target (static) completed in the FY 2019

DIVP[™] Consortium

Modeling real Physics into Virtual modeling and verify of consistency

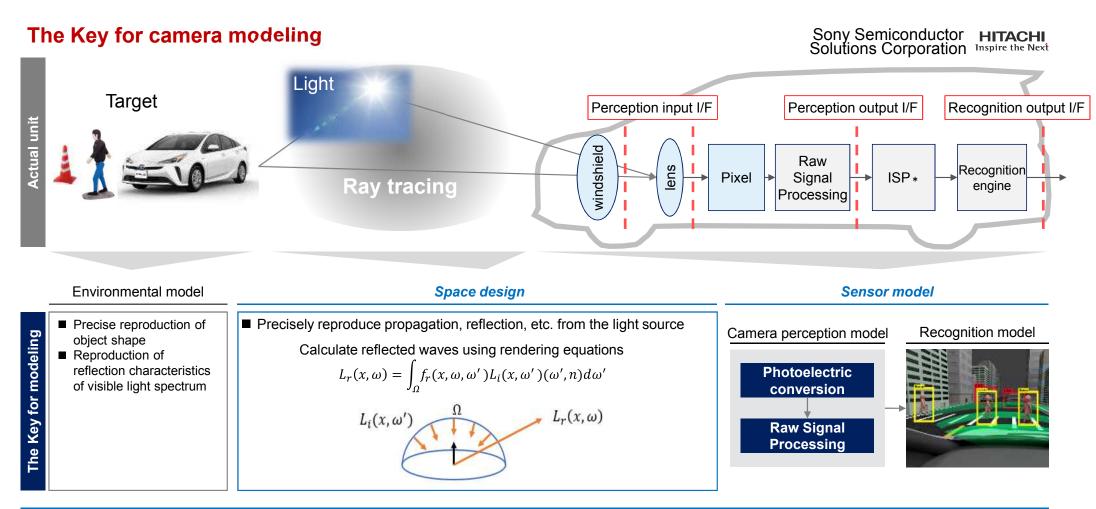
DIVP[™] Consortium


Highly consistent propagation modeling with Actual measured basis duplicate highly consistent sensor output

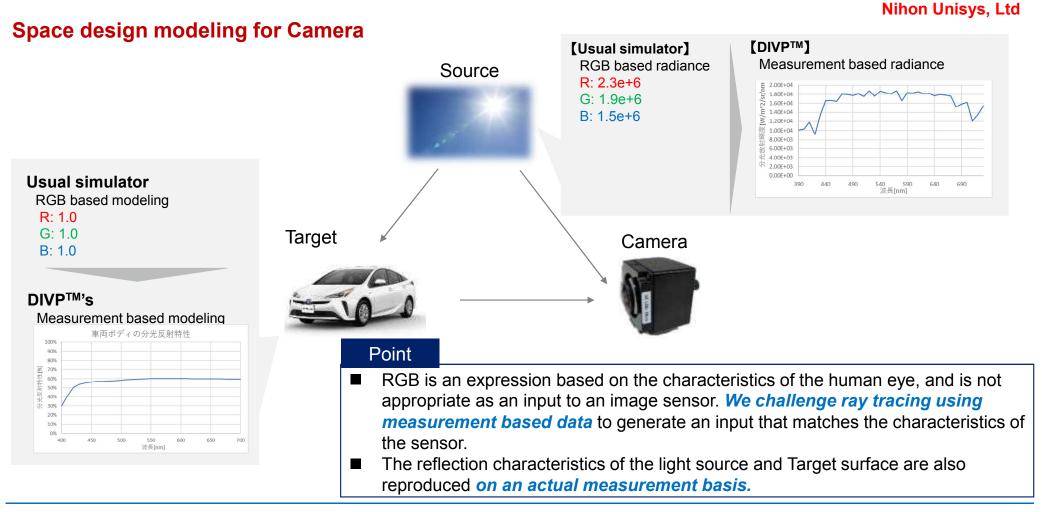
DIVP[™] sensor cons scene scope

Nihon Unisys, Ltd

			Priority			
No.	Scene	Camera	Radar	Lidar	Remarks	Impl
1	Backlit	High		High		Already
2	Rain	High	Medium	High		Not yet
3	Fog	High	Medium	High		Not yet
4	Pedestrians dressed in dark cross the intersection at night	High				Not yet
5	Wet asphalt	High		High		Not yet
6	Raindrops	Medium	Medium			Not yet
7	Manhole		Medium			Already
8	Objects close to the distance		High		Pedestrians jump out of the back of the vehicle	Already
9	Multipath from roadside wall		High			Already
10	Low reflection objects		Low		Cardboard	Not yet
11	Radio interference caused by sensors mounted on other vehicles		Medium			Not yet
12	Black vehicle			High		Already
13	Black leather clothes pedestrian			High		Already
14	Faded lane marking	Medium		Medium		Already


FY 2019 outcome

DIVP[™] Consortium

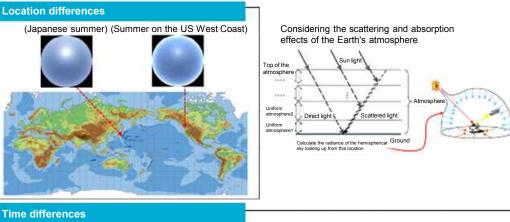

[Camera modeling]

Work on reproduction of visible light propagation and reflection between light source, target, and lens, and modeling of sensor internal structure for each part

* Image Signal Processor Source : SOKEN, INC, Sony Semiconductor Solutions Corporation DIVP™ Consortium

[Camera modeling] In order to generate an input that matches the sensor characteristics, the reflection characteristics of the light source and target surface are reproduced on an actual measurement basis. We challenge ray tracing using measured values.

DIVP[™] Consortium

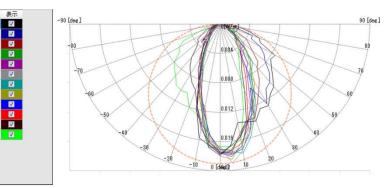

[Camera modeling] For the light source, use the measured sky light radiance and the light distribution characteristics of the headlamp


Space design modeling for Camera

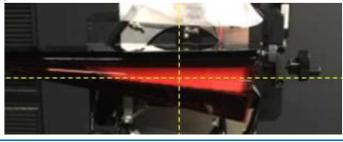
Nihon Unisys, Ltd

Expresses the brightness of visible and infrared light of the sun at any location and time (exact simulation based on actual measurements)

Sunlight / skylight simulation



Measurement of lamp characteristics


Measures light distribution characteristics of vehicle headlamps and taillights

Light distribution characteristics data of Prius tail lamp

Prius tail lamp measured

75 90 105

Source : Nihon Unisys, Ltd. DIVP™ Consortium

[Space design model] Compared to conventional conventional simulators that perform spatial rendering based on the three primary colors of RGB, it precisely reproduces the reflectance of visible light and the brightness of sunlight, and reproduces the perceptual output of a camera close to the real environment

DIVP[™] Space design

SOKEN Nihon Unisys, Ltd

DIVP™

Precise environment reproduction by sunlight and target reflectance

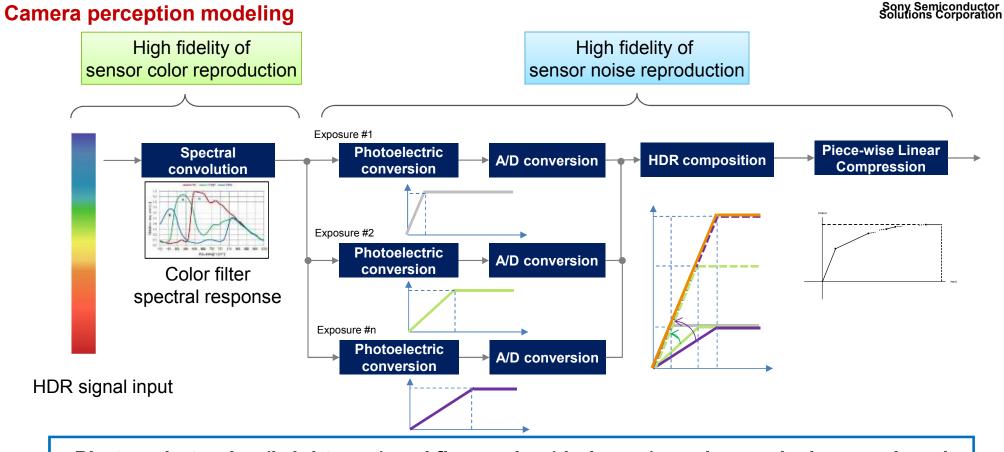
General simulator (CARLA)

Unrealistic space rendering due to limited (RGB3 primary color) reflection

Source: Copyright © CARLA Team 2019. DIVP™ Consortium

By simulating the spatial rendering based on the actual measurement, the malfunction scene is precisely reproduced

Reproduction of malfunction scene


Nihon Unisys, Ltd

Sunset scene

Source: Copyright © CARLA Team 2019. DIVP™ Consortium

[Camera modeling] The camera sensor reproduces the CMOS device and circuit of the actual unit, and can precisely reproduce Photon shot noise (bright part) and floor noise (dark part)

Photon shot noise (bright area) and floor noise (dark area) can be precisely reproduced

Source: Sony Semiconductor Solutions Corporation DIVP™ Consortium

[Camera modeling] Prepare the IMX490 sensor for the verification of consistency using camera perception output

Sensor specifications

basic-verification

Sony Semiconductor Solutions Corporation

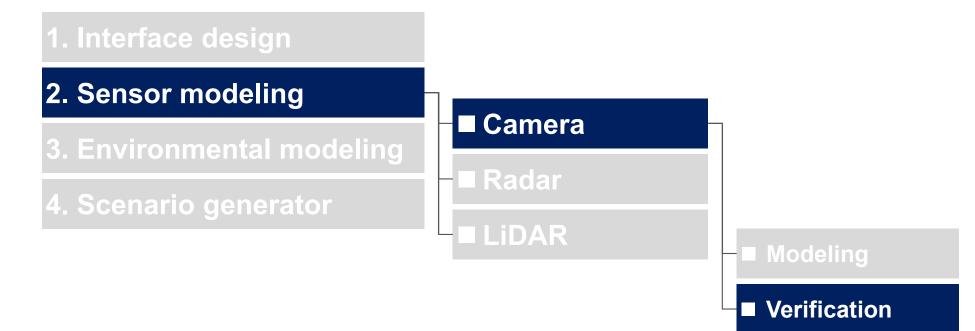
IMX490

■ Verification using IMX490 sensor for the pre-verification and the

ISX019	IMX490					
1.2Mpix 1280(H)x960(V)	5.4Mpix 2880(H)x1860(V)					
1/3.8 type	1/1.55 type					
2.9um × 2.9um	3.0um × 3.0um					
Rolling shutter	Rolling shutter					
Digital Overlap (DOL) method (Synthesize Muti-exposure type)	Sub-pixel method (2pixSimultaneous exposure)					
None	Existence					
YCbCr	RAW (RGGB)					
System On Chip (SOC) (Sensor + ISP)	Sensor only (Sensor + RAW Signal processing)					
ISP contents : • HDR composition • Tone mapping • AE, AWB control • Demosaic • YC conversion etc.	RAW Signal processing contents : •HDR composition •Tone mapping (PWL) •Shading correction etc.					
	1.2Mpix 1280(H)x960(V) 1/3.8 type 2.9um × 2.9um Rolling shutter Digital Overlap (DOL) method (Synthesize Muti-exposure type) None YCbCr System On Chip (SOC) (Sensor + ISP) ISP contents : •HDR composition •Tone mapping •AE, AWB control •Demosaic					

Actual unit used for the verification

Source: Sony Semiconductor Solutions Corporation $\mathsf{DIVP^{TM}}$ Consortium

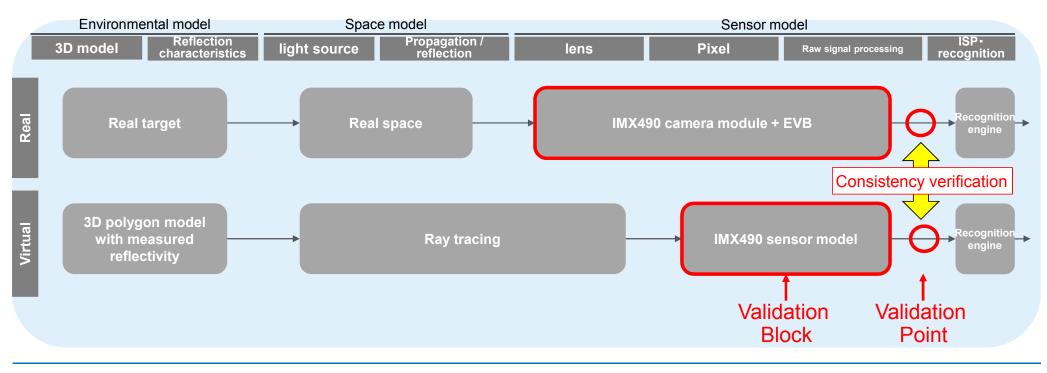

[Camera modeling] Further evolution of spatial rendering, lens model, and sensor model is required to reproduce malfunction factors

Camera malfunction event during reproduction plan

Sony Semiconductor Solutions Corporation

Item	malfunction	Reproduction (FY2020/2Q)
	Saturation of high-brightness subject when long shutter	Available
Dynamic range	Contrast loss due to tone mapping of HDR subjects	Available
Resolution	Resolution degradation when using a wide-angle lens	Available
Texture	Low illumination noise / dark area noise	Available
	Blur during long shutter	N/A
Motion blur	HDR composite artifact	N/A
	Rolling shutter	N/A
	Turn off LED light source during short shutter	N/A
LED Flicker	Banding artifact of the whole screen	N/A
Stray light	Low contrast, ghost	N/A (Difficulty obtaining lens specifications)

FY 2019 outcome

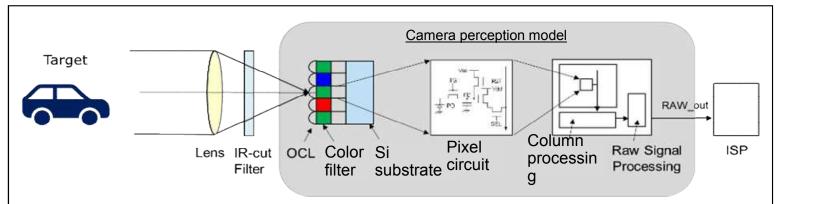

DIVP[™] Consortium

[Camera consistency verification] By comparing and verifying the perceptual output of the camera, the scenes and the areas where the difference appears are identified, and the causes are clarified to rotate the cycle from consistency verification to improvement

Overview of consistency verification

Sony Semiconductor Solutions Corporation

- Using the IMX490 sensor, compare the output result of the sensor model with the actual unit shooting data
- By comparing data, clarify the scenes and areas where differences appeare, and their causes



DIVP[™] Consortium

[Camera consistency verification] Extract the factors that influence the consistency and proceed with the verification based on these.

Configuration of camera perception model and error factors

Sony Semiconductor Solutions Corporation

	Input	OCL (On Chip Lens)	Color filter	Si substrate	Pixel circuit	Column processing	RAW Signal Processing
Error factors	 Illuminance Projection data shading 	Focusing rate	 Spectral characteristics 	 Quantum efficiency Photon shot noise Floor noise 	Circuit in pixel	■ Analog gain	 HDR composition PWL compression
Influence point of error	 Color reproduction Pixel displacement Brightness distribution 	Brightness	Color reproduction	BrightnessNoise level	Signal level	Signal level	Tone expression
Error influence	Large	Little	Large	Large	Little	Little	Large

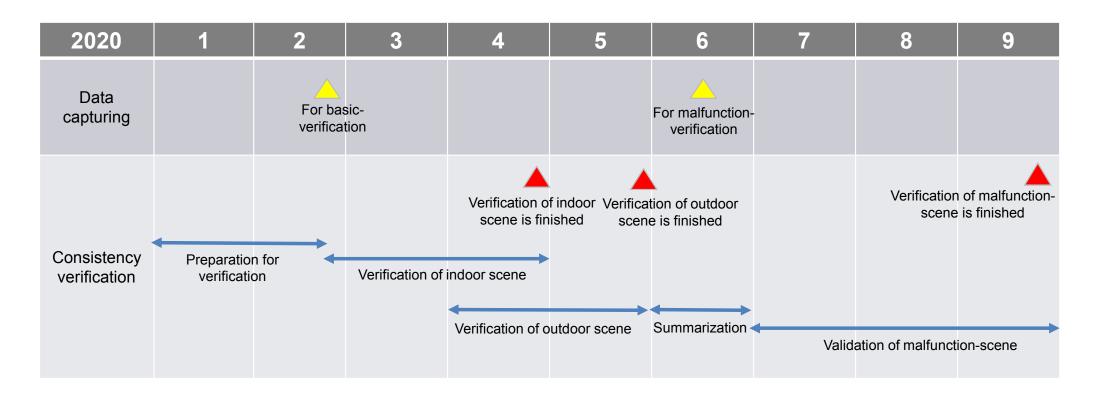
Source: Sony Semiconductor Solutions Corporation DIVPTM Consortium

[Camera consistency verification]

Designing a verification method that compares histograms starting from a known object

Consistency verification procedure

Verification process

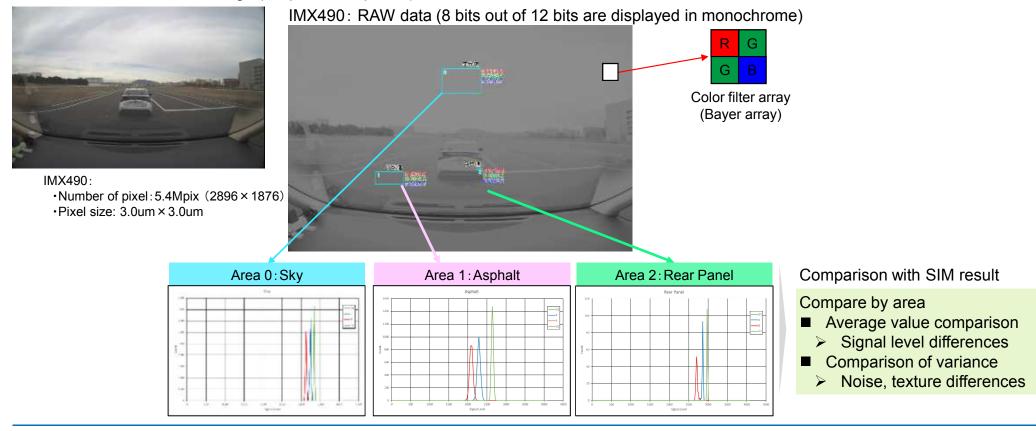

- ① Indoor (studio) evaluation
 - Verification with white board
 - Confirmation with an in-plane uniform level subject
 - Verification by gray chart and color chart
 - Confirmation of contrast and color reproducibility
- ② Outdoor evaluation
 - Real environment scene, malfunctioning scene
- Verification method
 - Histogram comparison
 - Extracted by whole image or by area (image height, color, distance, subject)
 - Comparison of average value (Signal), variation (Noise) and distribution shape
 - Perform factor analysis and feedback from areas with large differences

Sony Semiconductor Solutions Corporation

[Camera consistency verification] proceed with the consistency verification of both indoor and outdoor scene

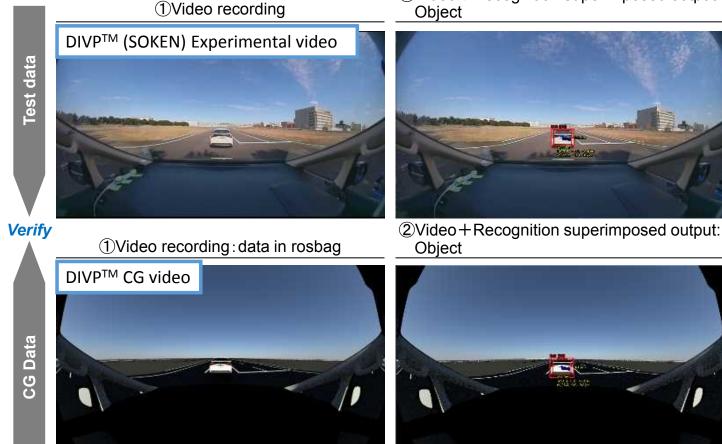
Schedule of the consistency verification

Sony Semiconductor Solutions Corporation



[Camera modeling] To verify model consistency by perceptual output comparison, compare histograms for each subject area, create histograms of pixel outputs for each area in the scene, and evaluate the consistency between the average and variance

Sony Semiconductor Solutions Corporation


Consistency verification method by perceptual output comparison (example of histogram acquisition)

Reference: IMX490: Color image (simple development)

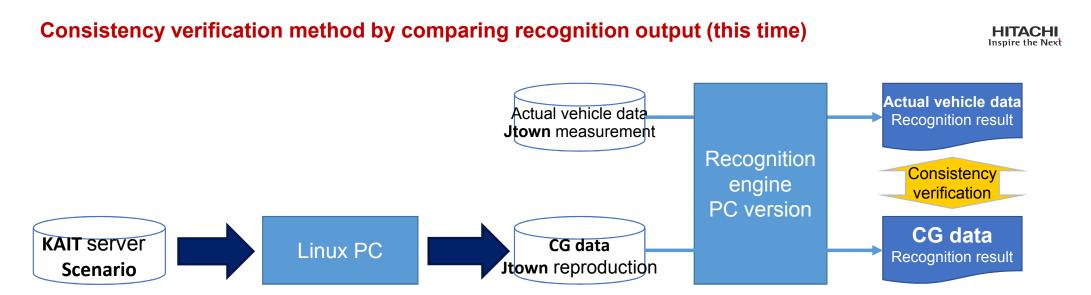
[Camera consistency verification] Confirmed that it is possible to verify the consistency between the recognition results of the actual unit and the simulation

Camera consistency verification

2Video+Recognition superimposed output: Object

Inspire the Next Experimental scenery

HITACHI

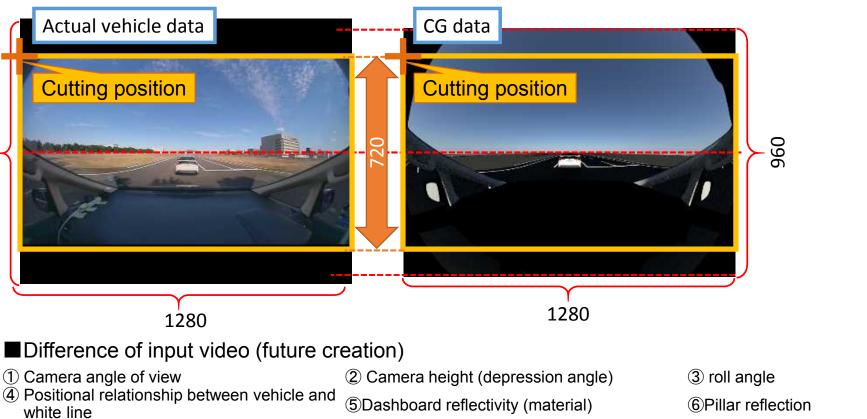

© Hitachi Automotive Systems, Ltd.

*Camera sensor utilizes ISX019 ISX019: •Number of pixel: 1.2Mpix (1280 × 960)

• Pixel size: 2.9um × 2.9um

Source : Hitachi Automotive Systems, Ltd. DIVP[™] Consortium

[Camera consistency verification] Confirmed that it is possible to verify the consistency between the recognition results of the actual unit and the simulation


- The difference between the actual vehicle data and the CG data recognition result is verified for each item of the recognition output I / F.
- Since the same recognition engine is used, if the input data is the same, it is assumed that the recognition results will perfect consisutency in the stationary state.

[Camera consistency verification]

Confirmed that it is possible to verify the consistency between the recognition results of the actual unit and the simulation

[Input video] Difference between actual vehicle data and CG data

JTown1-1-1: Set distance 10m

(8)Vehicle shadow

⑦Road surface color

DIVP[™] Consortium

Source : Hitachi Automotive Systems, Ltd.

1028

FY2019 Year-end report 69

9 Vanishing point

HITACH

Inspire the Next

[Camera consistency verification] Confirmed that it is possible to verify the consistency between the recognition results of the actual unit and the simulation

[Recognition result: Object]

				Absolute	
CameraRecogInfo	unit	real world	CG	error	Note
Horizontal size on screen	pixel	90	93	3	
Vertical size on screen	pixel	75	76	1	
Horizontal position	m	0.00	0.00	0.00	
Vertical position	m	1.76	1.86	0.10	
Hight position	m	1.46	1.51	0.05	
Horizontal center coorinate	pixel	642	639	3	
Vertical center coorinate	pixel	413	395	18	
Vertical relative distance	m	22.94	23.25	0.31	
Horizontal relative distance	m	-0.04	0.01	0.05	
Hignt relative distance	m	-0.56	-0.54	0.02	
Туре	-	2	2	-	passenger car
Target direction	-	1	1	-	object vehicle
Target angle	rad	0.00	0.00	0.00	
Reliability	%	99.00	99.00	0.00	

[Consideration of recognition results] The recognition distance was 22.94m in the actual vehicle data and 23.25m in the CG data.

Because the same recognition engine is used, the difference between the input images appears to be the difference in the recognition due to the stationary object and the short distance.

*Recognition results are exactly the same in multiple experiments using CG and actual vehicle images (excluding time)

Source : Hitachi Automotive Systems, Ltd. DIVPTM Consortium

FY2019 Year-end report 70

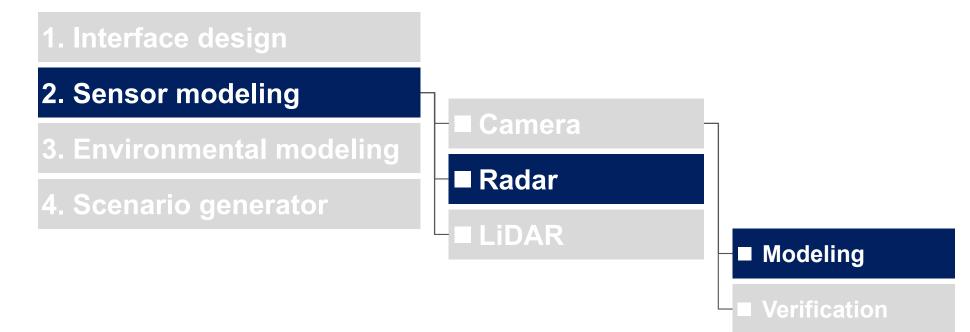
HITACH

Inspire the Next

In this year's activities, build an environment to verify consistency and issues were confirmed. We'll try to resolve issues in the first half of the fiscal year, before to verify difficult scene such as bad weather condition.

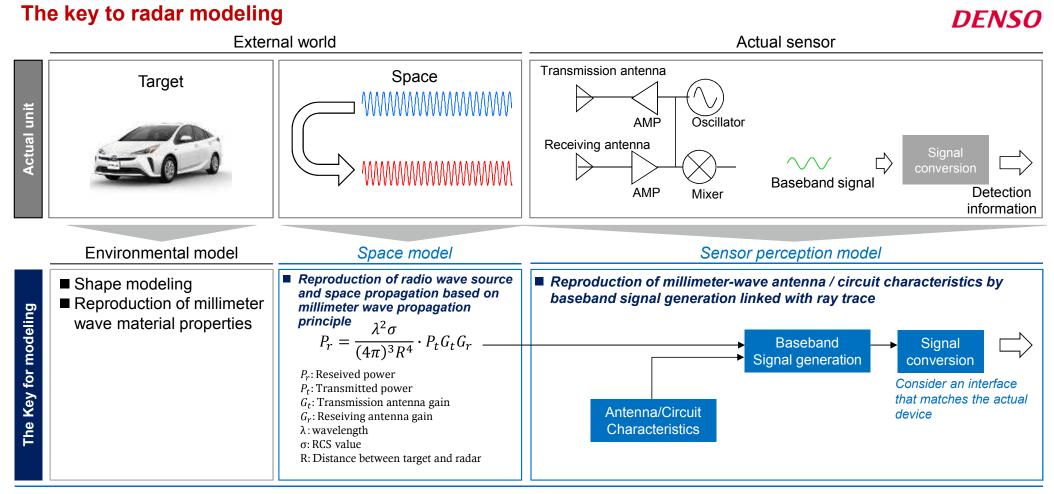
Summary of consistency verification and remaining issues

HITACHI Inspire the Next


Verification type	target	Item				
		type	distance	size	angle	
Pre verification	Prius	Consistent	Not consistent	Not consistent	Consistent (right in front)	
Basic verification	Prius	Consistent	Not consistent	Not consistent	Consistent (right in front)	

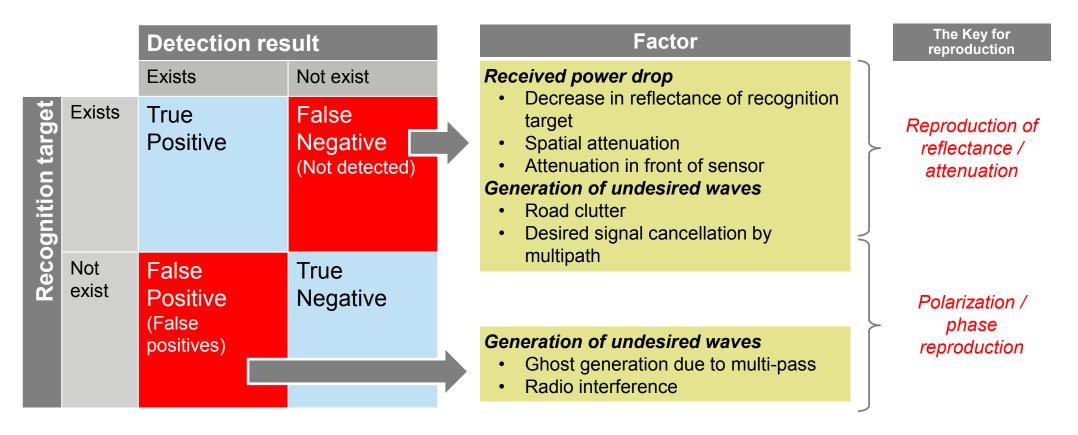
By reproducing the following with CG, it is expected that the recognition consistency between the real world and CG will be improved. However, because of the trade-off with the calculation time, the optimum value is derived while giving feedback to the recognition result.

Windshield	1 Camera angle of view	(2) Camera height (depression angle)			
③Roll angle	④Position relationship between vehicle and white line				
⑤Dashboard (re	eflectance / material)	6 Pillar reflection			
⑦ Road color	(8) Vehicle shadow	(9) vanishing point			


Source : Hitachi Automotive Systems, Ltd. DIVPTM Consortium

FY 2019 outcome

DIVP[™] Consortium


[Radar modeling] Coordination with the external world model is the Key for sensor modeling, and a precise environmental model and a spatial model that reproduces the reflection and propagation of millimeter waves are the key to radar modeling

[Radar modeling] For verification of malfunctioning factors, it is important to reproduce reflectance / attenuation and polarization / phase of radio waves.

The Key for radar modeling

DENSO Nihon Unisys, Ltd SOKEN

[Radar modeling] Collaboration with environmental models is the Key for radar modeling. Accurate environmental models and spatial models that reproduce millimeter wave reflection and propagation are the Key for radar modeling.

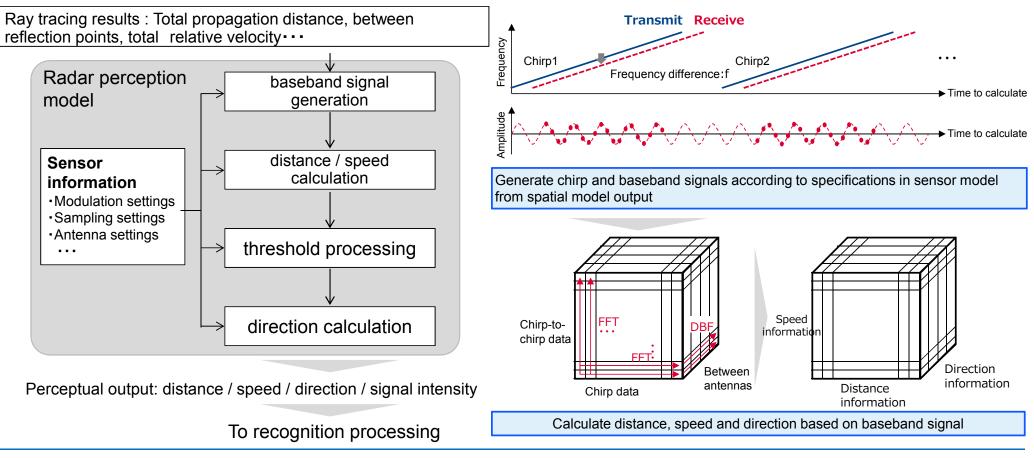
DENSO

Nihon Unisys, Ltd

Radar modeling

Road objects Point for propagation & reflection modeling Using Raytracing to duplicate millimeter wave propagation Specular Jtown Duplicate intensity using actual measured reflection Reflection characteristics In addition to duplicate Micro-Doppler physics as well Diffuse Specular Reflection Reflection Modeling millimeter wave source, propagation, reflection characteristics Diffuse Target Calculate propagation based on Rader formula Reflection Rx *P*_r: Recieved power *P_t*: Transmitted power $P_r = \frac{P_t G_t G_r \lambda^2 \sigma}{(4\pi)^3 R^4}$ *G_t*: Transmission antenna gain G_r : Recieving antenna gain Transmitted Тх λ : length millimeter wave σ: RCS R: Distance

Source : DENSO,INC, SOKEN, INC DIVP[™] Consortium

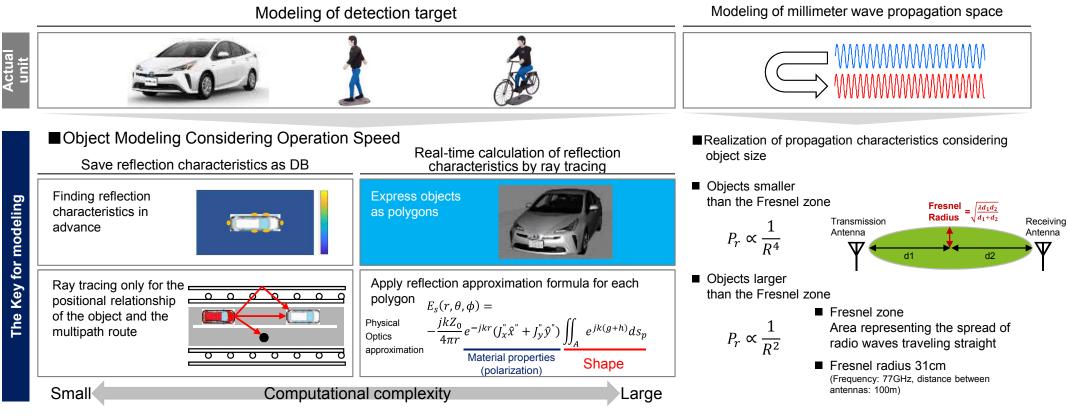

FY2019 Year-end report 75

SOKEN

[Radar modeling] Developed a millimeter-wave radar perception model consisting of baseband signal generation, distance / speed calculation, threshold processing, and direction estimation

Radar processing flow

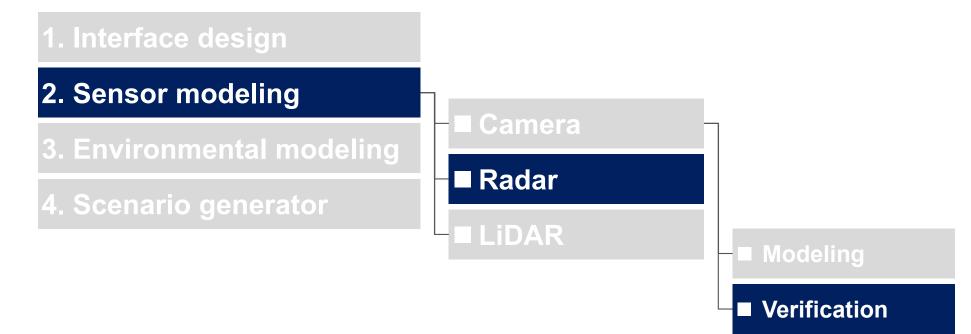
Nihon Unisys, Ltd **DENSO**



Source : DENSO,INC, SOKEN, INC DIVP[™] Consortium

[Radar modeling] Improve reflectivity / attenuation and reproducibility of radio wave polarization / phase using environment model considering polarization and spatial model considering object size

The Key for radar modeling


DENSO Nihon Unisys, Ltd SOKEN

Objects are expressed as polygons. The consistency of the reflection intensity will be improved by Physical Optics.

Source : DENSO,INC, SOKEN, INC , Mitsubishi Precision Co. Ltd. $\mathsf{DIVP^{\mathsf{TM}}}$ Consortium

FY 2019 outcome

DIVP[™] Consortium

[Radar consistency verification] Step-by-step verification of error factors

Millimeter-wave radar coincidence error factors

DENSO

	Item	Confirmation contents	Target	Location	Verification error factors		
					Target	Space	Sensor
	Evaluation of joint operation	 Operation verification Accuracy of metal reflection and space propagation 	Corner reflector	Anechoic chamber	 Metal reflection error (amplitude / phase) Area calculation error 	Propagation attenuation error	Amplification error
	Preliminary evaluation (still object)	 Effect of polygon accuracy Precision of dielectric such as glass / bumper Multipass accuracy 	 Prius NCAP dummy 	Jtown	 Shape error Dielectric reflection / transmission error 	 Multipath path search error Road surface reflection error 	 Noise error Antenna directivity error
	Basic evaluation (moving object)	 Relative speed generation accuracy 	 Prius NCAP dummy 	Jtown	Same as above Micro Doppler error	Same as above	_
	Malfunction evaluation malfunct	 Influence of various malfunction factors on accuracy 	Rain	Rain test track	_	Spatial attenuation modeling error	_
			Wall	_	Wall reflection error	_	
			Radio interference	_	_	_	Antenna polarization characteristics error

[Radar modeling] The distance / velocity / azimuth / signal intensity that can be detected by the radar principle is used as an index for consistency verification.

Target value

DENSO

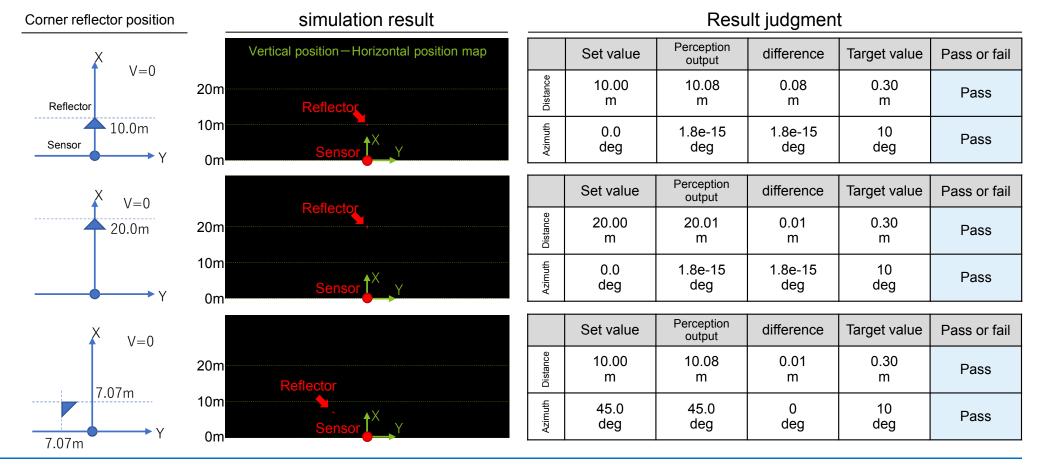
Item	Target value (Difference from actual unit)	Grounds
distance	30cm	Equivalent to 500MHz distance resolution
Vehicle	0.3km/h	Performance of actual verification unit
Azimuth	10deg	Performance of actual verification unit
intensity	±5dB	Performance of actual verification unit

[Radar consistency verification] Rader intensity is not consistent, further study for duplication various Targets(Figure, Size, materials, etc) needs to be discussed

Rader consistency verification

DENSO

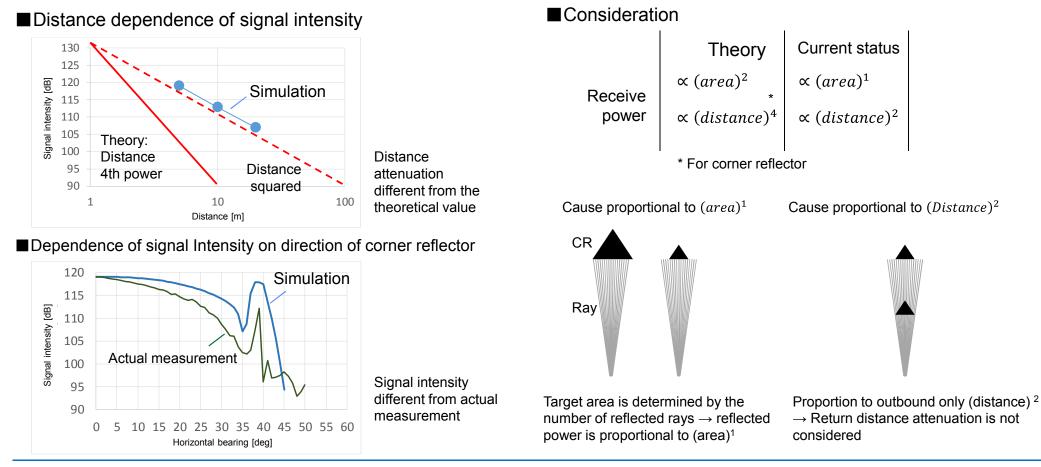
Static test in PG


Static test in Labo

[Radar consistency verification]

Under basic conditions using corner reflectors, the consistency of distance and angle was confirmed

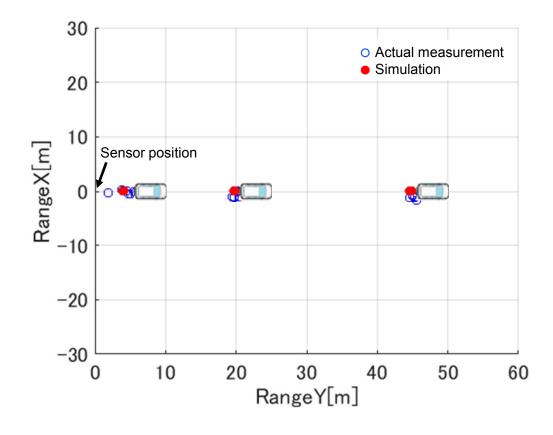
Combination verification results using corner reflectors


DENSO

Source : DENSO, INC, Data by Nihon Unisys, Ltd. $DIVP^{\mathsf{TM}}$ Consortium

[Radar consistency verification] For the intensity, it is necessary to obtain the area that contributes to reflection and consider distance attenuation.

Reflectivity consistency


Source : DENSO, INC DIVP™ Consortium

FY2019 Year-end report 83

DENSO

[Radar consistency verification] We are verifying the consistency with the Prius at Jtown. It was confirmed that the distance / azimuth / velocity (0 km / h) was almost the same. Verify the consistency in detail, including the signal Intensity.

Pre-verification (still object)

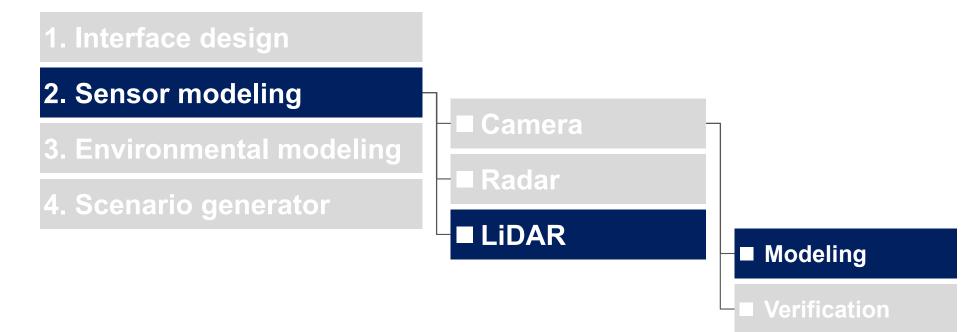
Source : DENSO, INC, Data by Nihon Unisys, Ltd DIVP™ Consortium

FY2019 Year-end report 84

DENSO

It was confirmed that the distance / azimuth / velocity (0 km/h) was almost the same. Inconsistency of Intensity will be improved by space model refinement.

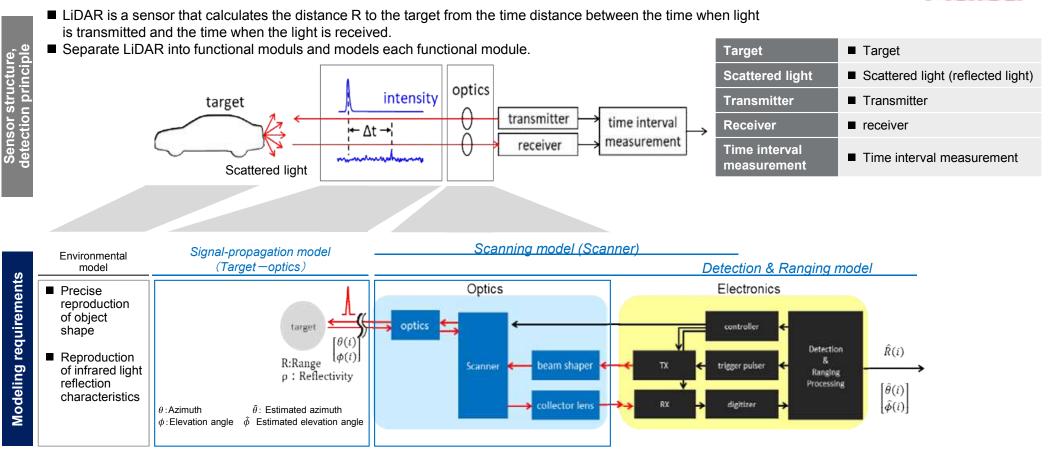
Summary of consistency evaluation and remaining issues


DENSO

Evaluation	Target	Items			
		Distance	Azimuth	Velocity	Intensity
Evaluation of joint operation	Corner Reflector	Consistent	Consistent	Consistent (0km/h)	Inconsistent
Preliminary evaluation	Prius	Almost Consistent	Almost Consistent	Almost Consistent	—

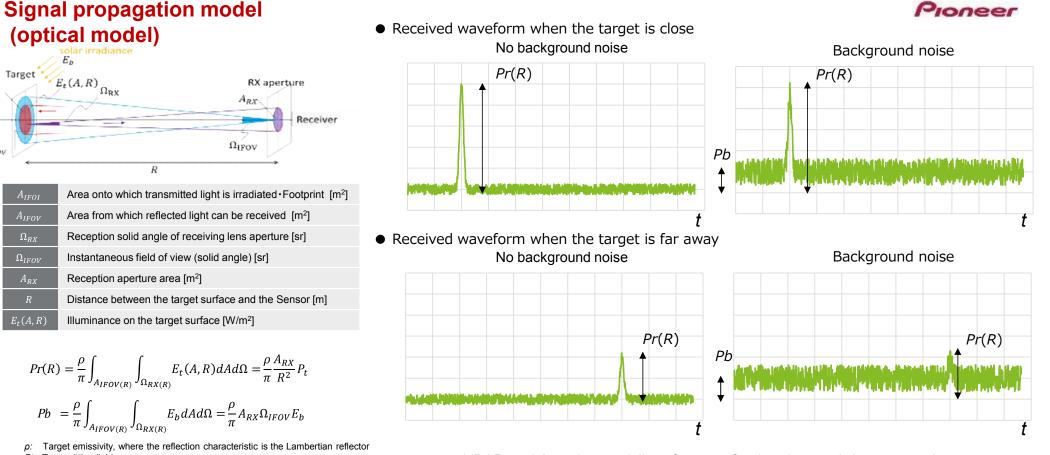
To improve the consistency of signal intensity, the following items are required.

- Reflection characteristics considering the shape of the object
- Improvement of multipath calculation accuracy


FY 2019 outcome

DIVP[™] Consortium

[LiDAR modeling] Examining the requirements to be modeled in LiDAR simulation, modeling of signal propagation, LiDAR scanning, optical system / ranging method is the Key


The Key for LiDAR modeling

FY2019 Year-end report 87

Pioneer

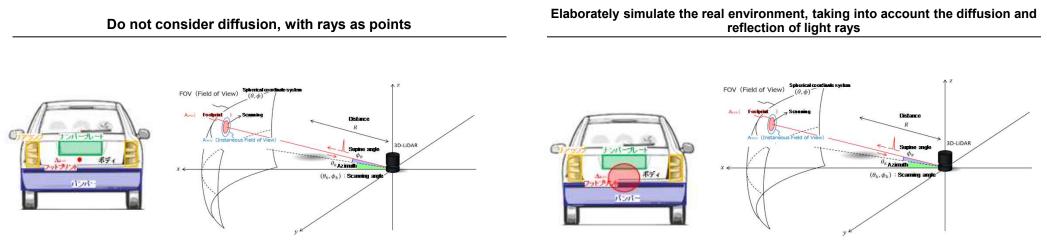
[LiDAR modeling] Considered the signal propagation model (optical model) and clarified the factors to be modeled

Pt: Transmitting light power

AIFOI

AIFOV

 E_b : Irradiance from the sun


LiDAR model requires modeling of target reflection characteristics, propagation attenuation, and background light power that affect Pr and Pb

Source : PIONEER SMART SENSING INNOVATIONS CORPORATION $\mathsf{DIVP}^{\mathsf{TM}}$ Consortium

[LiDAR modeling] Computation amount of scan model is scalable by handling of footprint (point to surface)

Scan model

Pioneer

- Footprint from point to surface (beam divergence is represented by multiple rays, taking into account the angle of incidence)
- Because it expresses beam divergence, it is possible to handle cases where beams are irradiated on multiple targets
- High resolution beam emission timing (nsec order)

Source : PIONEER SMART SENSING INNOVATIONS CORPORATION $\mathsf{DIVP^{\mathsf{TM}}}$ Consortium

[LiDAR modeling] Environmental model for LiDAR includes quantified reflection characteristics of target for LiDAR signal wavelength.

Environmental model

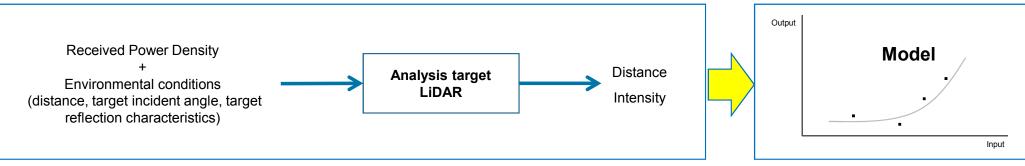
Pioneer

Diffuse reflection characteristics		
Transmission characteristics	Reproduce measured target reflection characteristics	
Specular reflection characteristics	Reproduce measured larger renection characteristics	
Retroreflective characteristics		
Multiple reflection characteristics	Reproduce measured target reflection characteristics * If there is a scene to be reproduced	
Propagation attenuation	Consider for each irradiation beam	
Background light	Consider each iFov of scanning point	

[LiDAR modeling] Detection & Ranging Model is modeled on a design or analysis basis

Design base

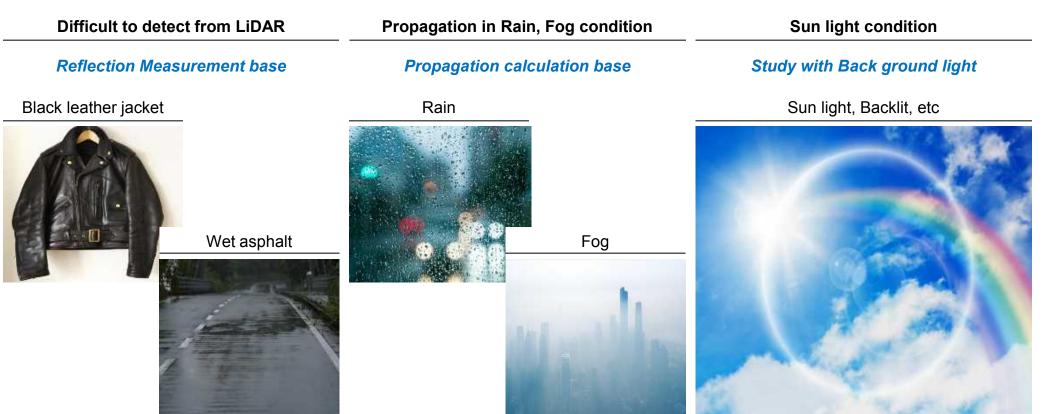
Pioneer


● When the design specification is known ⇒ Modeling from design specification

Model each element based on design specification

Analysis base

• When the design specification is unknown \Rightarrow Modeling from measurement values (analysis base)



Measures output for known inputs (environmental conditions) and models the relationship

[LiDAR modeling] Prioritize LiDAR detection error cases

LiDAR error cases example

Pioneer

[LiDAR modeling] We will work on reproducing the thermal barrier paint seen in Tokyo (Odaiba) as a scene where white lines are difficult to detect

Reproduction of LiDAR malfunction event (white line detection)

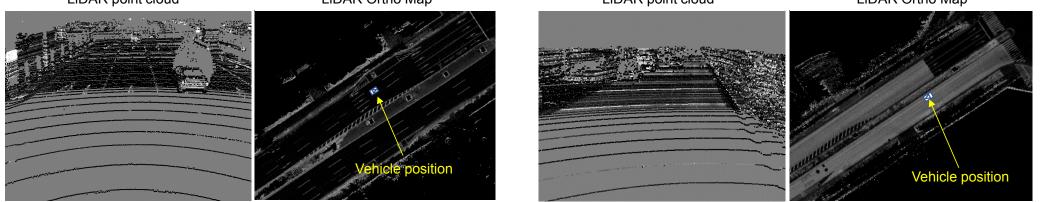
Pioneer

Normal asphalt (near Big Sight)

White line can be detected due to the difference in reflectance between asphalt and white line

LiDAR point cloud

LiDAR Ortho Map


Thermal barrier coating (in front of Telecom Center)

■ Difficult to detect white line because of the same reflectance of asphalt and white line

LiDAR Ortho Map


Source:金沢大学、SIP第2期自動運転(システムとサービスの拡張)「自動運転技術(レベル3,4)に必要な認識技術等に関する研究」計測データ Kanazawa University, SIP Phase 2 Autonomous Driving (Expansion of systems and services) "Research on recognition technology required for autonomous driving technology (levels 3 and 4)" Measurement data DIVP[™] Consortium

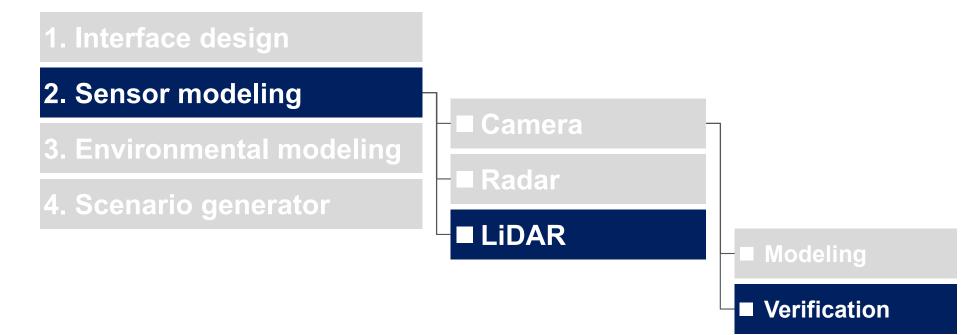
[LiDAR modeling] Evaluation using LiDAR model

Use of LiDAR model

Spatial rendering performance improvement

Examination of improvement by using Optix, confirmed about 3000 times faster

processing	Ray number		Processing time per ray [µsec]
Conventional	240,152	1004.458	4.1826
Optix/version	1,080,000	1.4	0.0013


Nihon Unisys, Ltd Proneer

Status of sensor modeling

- Modeling 2 different LiDARs with different spacial resolution, verifying consistency
- Once the measurement of the reflection characteristics of the target and embedment to the environmental model are completed, a point cloud close to the actual measurement can be simulated (required target model, reflection characteristics data, scenario)
- ex) The phenomenon that the road surface on the previous page is indistinguishable from the white line can be reproduced because a simulation that reflects the reflection characteristics of the road surface is possible.

DIVP[™] Consortium

FY 2019 outcome

DIVP[™] Consortium

[LiDAR modeling] Performs effective consistency verification by eliminating error factors other than the evaluation target as much as possible at each step

consistency verification (joining operation check, preliminary verification)

Step	Purpose of verification	Evaluation parameters	Evaluation indicator
Combined operation	Evaluate the consistency of LiDAR perception model(scanning model and detection & ranging model) by eliminating errors caused by	■ Angle	 Consistency of vertical resolution (elevation angle between adjacent lines) Consistency of horizontal resolution (azimuth between adjacent points in the horizontal direction)
check (IT)	environmental model, spatial propagation model and scenarios as much as possible.	DistanceIntensity	Consistency of angle and accuracy at each distance of a target whose shape and reflection characteristics are known
	Evaluate the consistency of environmental model and LiDAR perception model(scanning model and detection & ranging model) by eliminating errors caused by spatial propagation model and scenarios as much as possible.	 Shortest distance to measured object (Prius) 	 Consistency of distance accuracy and precision
Pre-		 Number of target points (points detected on object) 	 Consistency of accuracy and precision of number of target points
verification (PV)		Object size (width)	 Consistency of accuracy and precision of object size (width)
		Intensity distribution of target points	Intensity distribution consistency
		 Recognition model output result 	 Consistency of recognition model output results
Malfunction reproduction verification			

Extensibility Implementation of ongoing verification

DIVP[™] Consortium

verification

【LiDAR consistency verification (joint operation check) 】 Error factors in joint operation check and model to be evaluated

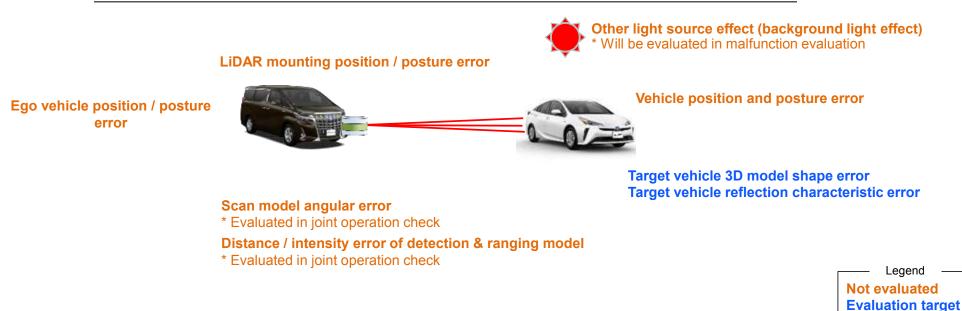
consistency verification (joint operation check)

Evaluate the consistency of, scanning model, and detection & ranging model by eliminating errors caused by environmental model, spatial propagation model and scenarios as much as possible.

Source : PIONEER SMART SENSING INNOVATIONS CORPORATION $\mathsf{DIVP^{\mathsf{TM}}}$ Consortium

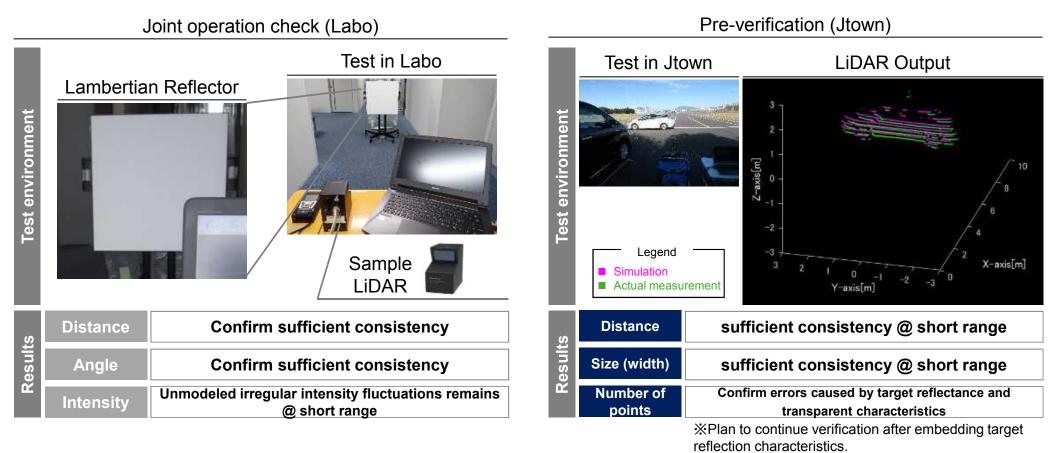
FY2019 Year-end report 97

loneer


[LiDAR consistency verification (pre-verification)] Error factors in pre-verification and the model to be evaluated

Consistency verification (pre-verification)

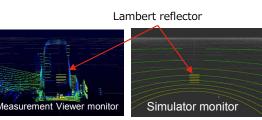
Errors due to the LiDAR mounted position / posture, ego vehicle position / posture, and target vehicle position / posture are eliminated as much as possible, and the scanning model / detection & ranging model and environment model (shape and reflection characteristics of the target object) are evaluated together.


The shortest distance to the target object (Prius), the number of points in the target point cloud (the number of points detected on the object), the object size (width), the intensity distribution of the target point cloud, and the output results of the recognition model

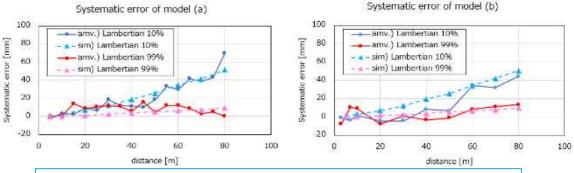
[LiDAR consistency verification] In the joint operation check, verify sufficient consistency for distance and angle, and in the preliminary verification, verify the shortest distance, size (width), and total number of points

LiDAR consistency verification

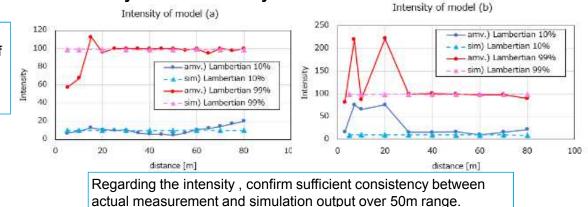
Pioneer



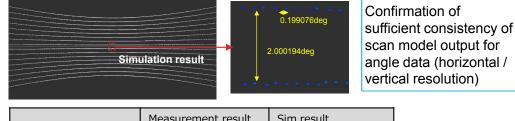
Source : PIONEER SMART SENSING INNOVATIONS CORPORATION $\mathsf{DIVP^{\mathsf{TM}}}$ Consortium


[LiDAR consistency verification (joint operation check)] Confirmation of a certain degree of coincidence of accuracy and accuracy of distance and intensity, sufficient confirmation of angle

Lab verification results



• Distance data consistency result



Regarding the distance, confirm sufficient consistency between actual measurement and simulation output.

Intensity data consistency result

Angle consistency test result

	Measurement result	Sim result
Horizontal resolution	0.20deg	0.20deg
Vertical resolution	2.01deg	2.00deg

vertical resolution)

Source : PIONEER SMART SENSING INNOVATIONS CORPORATION DIVP[™] Consortium

FY2019 Year-end report 100

Pioneer

In the joint operation check in the laboratory, four issues were confirmed, and countermeasures continued to be studied

Issues found in the joint operation check (1/2)

Vertical beam divergence mismatch due to the effect of the lens.

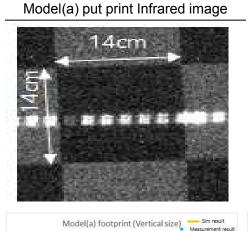
100

90

80

70

60


50

40

30

20

■ At vertical direction about 10mm error occurs because the scanning model does not consider the effect of the lens

100

90 80

E 70

m 60

40

30

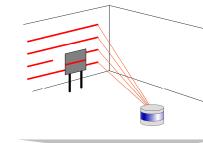
20

Difference about 10mm

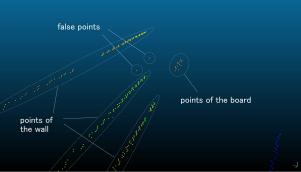
20

Distance to target (m

Model(b) put print Infrared image


20

30


noneer

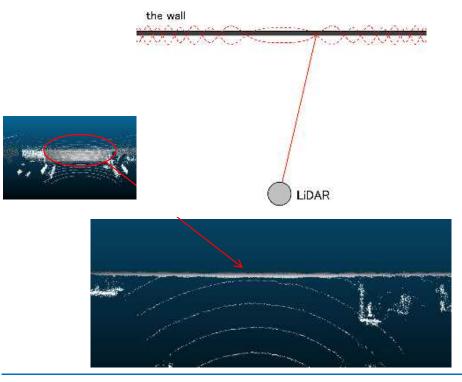
Noise generated between adjacent objects (false points)

■ In case there are two adjacent objects with a short distance difference, false point occurs between the two objects.

For example, when a wall and a board are close, false points occur between the wall and the board.

 Sim result Model(b) footprint (Vertical size) Measurement resul Difference about 10mm ă0 Distance to target (m)

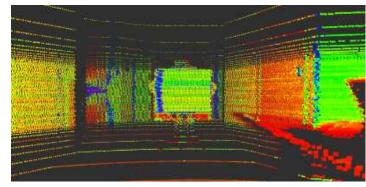
Source : PIONEER SMART SENSING INNOVATIONS CORPORATION DIVP[™] Consortium


30

Confirm the four issues in the joint operation check, and continue to consider countermeasures

Issues revealed by the joint operation check (2/2)

The phenomenon that the plane is distorted

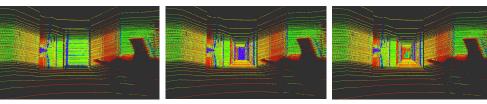

Since the error changes depending on the measured distance, the plane is observed to be distorted.

Pioneer

Phenomenon of different intensity on the same material

Even though the plane is made of the same material, variations of intensity are observed.(blue line in left sideband and variation of each horizontal line from the plate with the same material)

Irregular intensity fluctuations are depend on the distance.

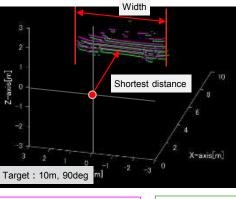

Intensity about 70

Distance 5m

Intensity about 220

Distance 15m

Distance 30m Intensity about 95


Source : PIONEER SMART SENSING INNOVATIONS CORPORATION $\mathsf{DIVP^{\mathsf{TM}}}$ Consortium

[LiDAR consistency verification (pre-verification)] Joint test with Jtown data At long distances, there are errors due to the position and orientation of the sensor, but both the distance and the size (width) evaluation are sufficiently consistent as a LiDAR model.

Jtown verification result:

Point cloud comparison

distance evaluation

 ★ Short range : Confirmation of sufficient consistency
 ※Model (a) has systematic error due to LiDAR

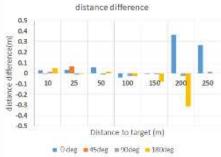
mounting position.

·Size(width) evaluation

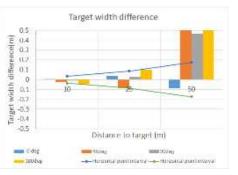
★ Short range : Confirmation of sufficient

reflection characteristics, and the LiDAR

Detection & Ranging model.


 \star Long range : Model (a)/(b) have error due to

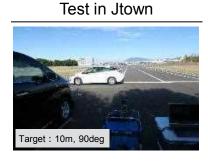
the position and orientation of the object, target


★Long range : Model (a)/(b) have error due to the position and orientation of the object, target reflection characteristics, and the LiDAR Detection & Ranging model.

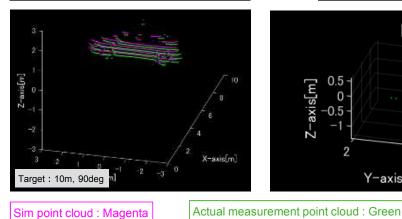
Model(a)

Model(b)

Sim point cloud : Magenta


Actual measurement point cloud : Green

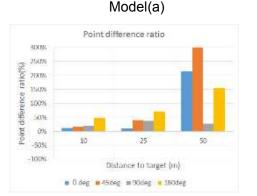
consistency

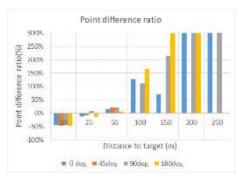

Source : PIONEER SMART SENSING INNOVATIONS CORPORATION $\mathsf{DIVP}^\mathsf{TM}$ Consortium

[LiDAR consistency verification (pre-verification)] Joint test with Jtown data Confirmation of error occurrences due to target reflection / transmission characteristics in numbers of point evaluation

Jtown verification result

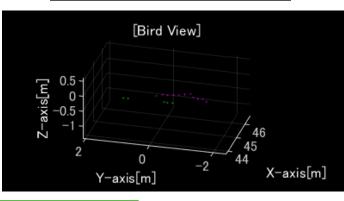
Point cloud comparison (10m)




 $\boldsymbol{\cdot} \text{Numbers}$ of point evaluation

★ Short range : Model (a)/(b) have error due to target reflection / transmission characteristics.

★ Long range : Model (a)/(b) have error due to the position and orientation of the object, target reflection characteristics, and the LiDAR Detection & Ranging model.


Point cloud comparison (50m)

Model(b)

Pioneer

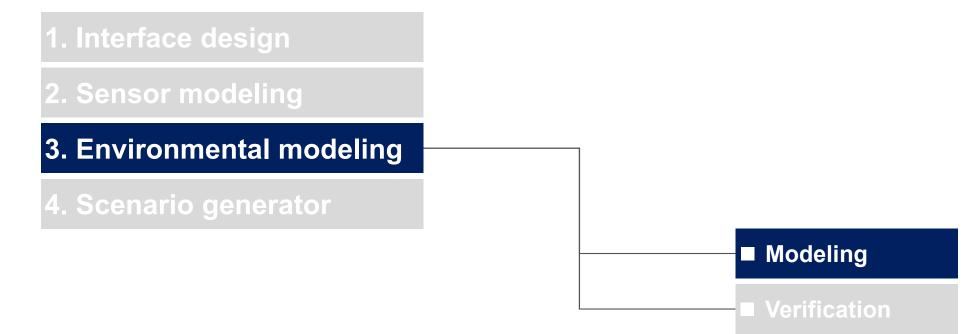
Source : PIONEER SMART SENSING INNOVATIONS CORPORATION DIVP^TM Consortium

In this year's activities, certain degree of consistency and issues were confirmed. We'll try to resolve issues in next year's activities

Summary of consistency verification and remaining issues

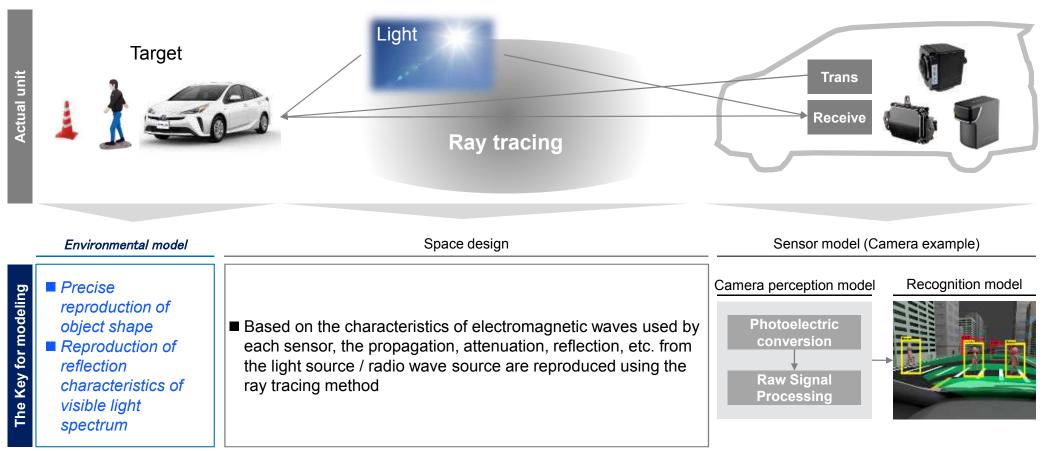
Pioneer

Results of consistency verification in joint operation check(Summary and issues)


Model	Evaluation items	Result of consistency verification
Scan Model	angle (horizontal & vertical resolutions)	Confirmed sufficient consistency
	beam divergence(footprint size)	In the vertical direction, errors remain due to the effect of the lens. In the horizontal direction confirmed sufficient consistency
Detection &	distance	Confirmed sufficient consistency
Ranging Model	intensity	In short range, there are irregular intensity fluctuations depending on the distance. In long range, confirmed sufficient consistency

■ Results of consistency verification in preliminarily verification (Summary and issues)

Evaluation items	Short range consistency	Long range consistency
Target size(Width)	Confirmed sufficient consistency	
Distance to the target	Confirmed sufficient consistency	Error remains due to the position and orientation of the object, target reflection characteristics, and the LiDAR
Number of points on the target	Error remains due to target reflection / transmission characteristics.	Detection & Ranging model.


※After the reflection characteristics of the target are embedded, the remaining issues will be re-evaluated. After the re-evaluation, the LiDAR model is ready to be evaluated as an automatic driving simulator.

FY 2019 outcome

DIVP[™] Consortium

Precise Environmental & Space design modeling & accumulation into Database as Real-PG are important Key for Highly consistent input data generation for sensor simulation

Environmental model / space design

DIVP[™] Consortium

Sensor principle based measurement & modeling for Asset catalog

Measurement facility example

SOKEN 📩 三菱 スレシジョン株式会社

Reflection measurement

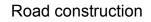
Source: SOKEN, INC DIVP[™] Consortium

Measured Real-PG^{*1} using MMS^{*2} for Sensor simulation Virtual-PG

Rain

Measurement scene

Specific Environment Area

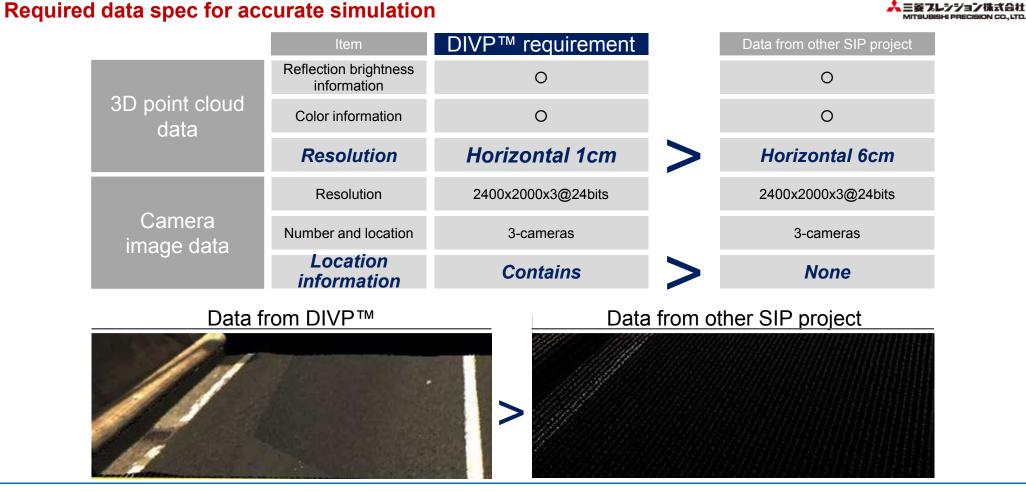


Backlight

*1 PG : Proving ground, *2 MMS : Mitsubishi Mobil Map System Source : JARI home page, SOKEN, INC, Mitsubishi Precision Co. Ltd., NIED Homepage DIVP™ Consortium

Junction with poor visibility

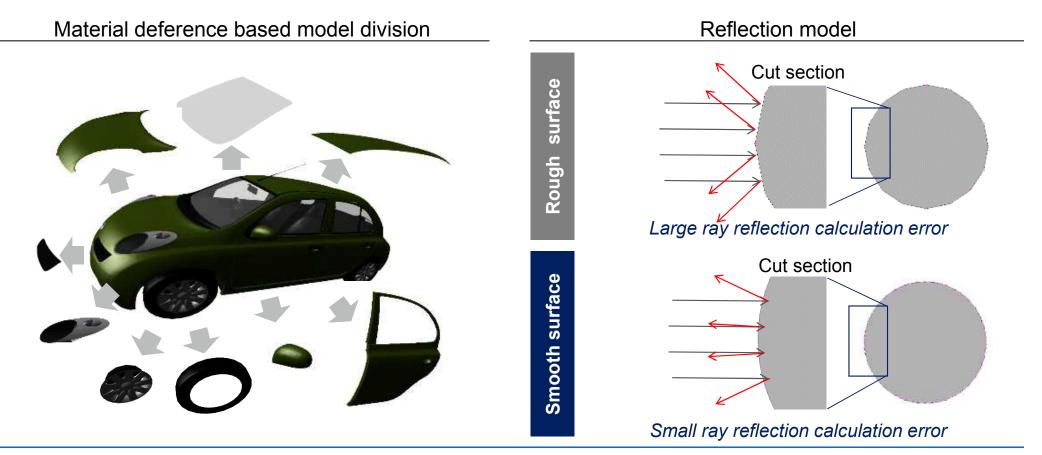
Versatile Urban Area



Snow

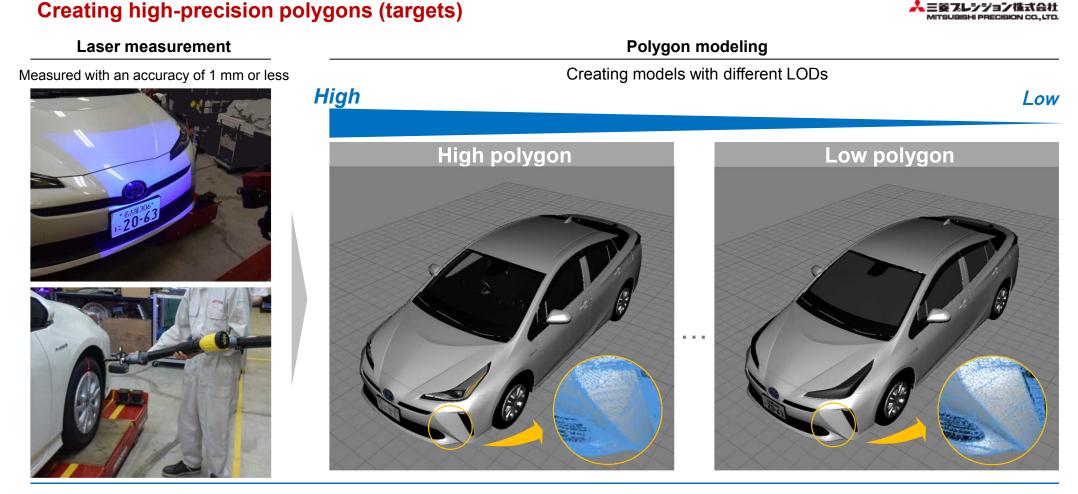
FY2019 Year-end report 109

Implement 1cm base Environmental model with accurate measurement



Source : Mitsubishi Precision Co, Ltd. DIVP[™] Consortium

In order to improve simulation accuracy, it is essential to build a high-definition environmental model divided for each material with different characteristics

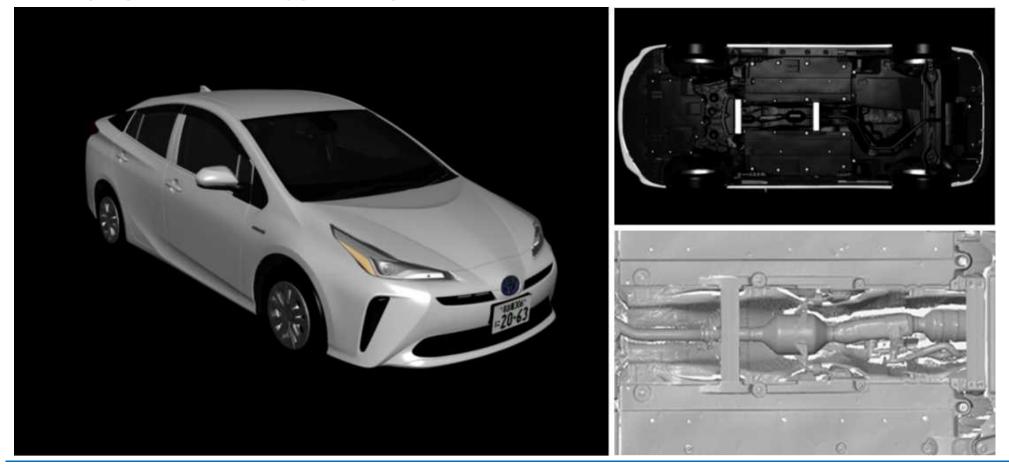

Relation environmental model definition vs Evaluation accuracy

Line Aliantic State St

Source : Mitsubishi Precision Co. Ltd. DIVP[™] Consortium

Create polygon models with different LOD (Level of Detail) to verify the effect on sensor output accuracy

Source : Mitsubishi Precision Co. Ltd. DIVP[™] Consortium


FY2019 Year-end report 112

差プレシジョン株式会社

Create models precisely down to the bottom, aiming to reproduce millimeter wave multipath

Creating high-precision polygons (targets)

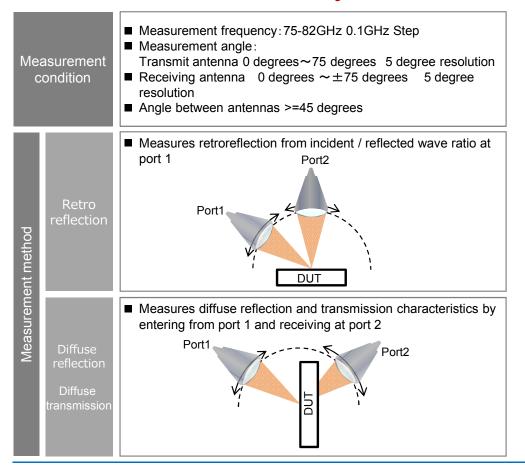
Line Alight State Alight State Alight Alig

Source : Mitsubishi Precision Co. Ltd. DIVP™ Consortium

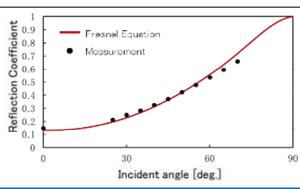
Detail characteristics Measurement based Environmental & Space deign modeling

Reflection / Refraction characteristics Step by step growth Reflection and transmission characteristics Measurement important for each sensor function are Source 0° based measured for each material and reflected Modeling in the simulator. Specular В Retro Reflection R reflection input D Generalize models and reproduce Extrapolation unmeasured materials Diffuse Reflection 900 Highly affected Factor in each sensors Refraction Camera Visible light's Diffuse Reflection Diffuse В Transmission Millimeter wave Diffuse Reflection Rader D Specular Transmission Lidar Infrared light's Retro reflection

Real based Measurement for modeling


Nihon Unisys, Ltd SOKEN

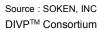
* BRDF: Bidirectional Reflectance Distribution Function, BTDF: Bidirectional Transmittance Distribution Function


DIVP[™] Consortium

Designs and prototypes a measurement system and performs measurements to achieve sufficient measurement accuracy for sensor consistency verification

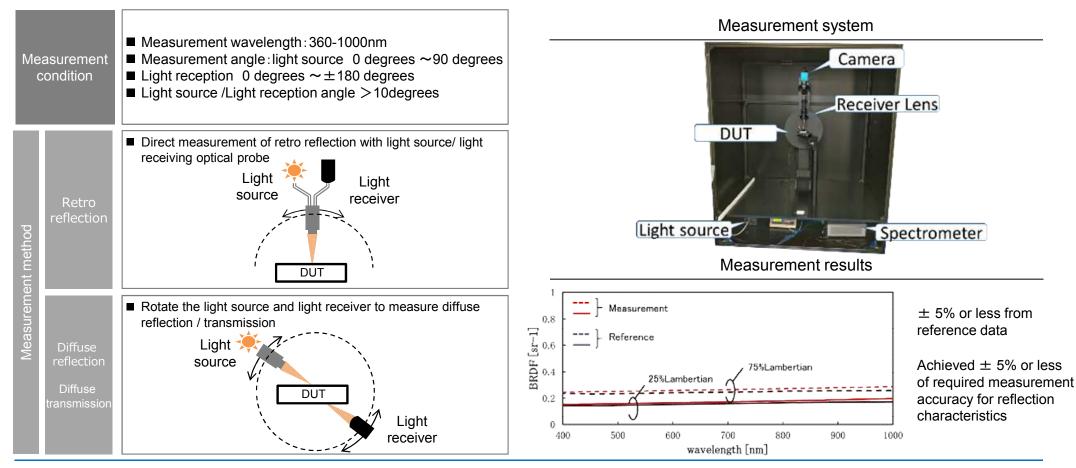
Millimeter wave measurement system

Measurement system



Measurement results

The difference between the theoretical formula (Fresnel equation) and the measured value is 0.5 dB or less


SOKEN

Sufficient accuracy achieved for radar target value \pm 5 dB

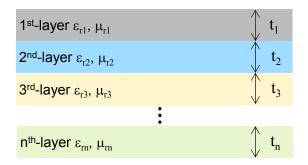
Designs and prototypes a measurement system and performs measurements to achieve sufficient measurement accuracy for sensor consistency verification

Visible light / infrared light measurement system

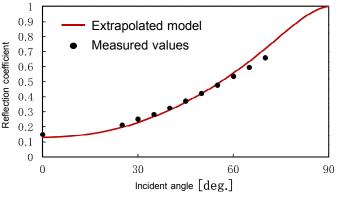
Source : SOKEN, INC DIVP[™] Consortium

FY2019 Year-end report 116

SOKEN

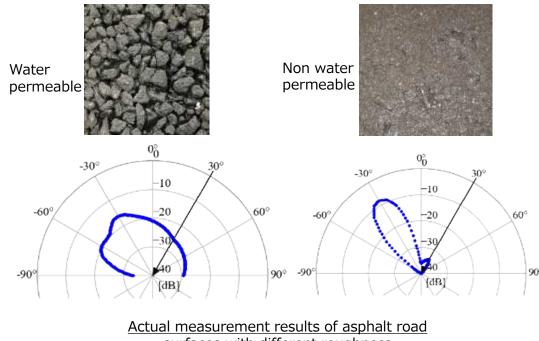

Sample plates of sensor target constituent material was prepared for comparison between simulation and experiment on multi-purpose urban test course in JARI J-town

DUT	DUT list and reflection characteristics measurement status								Not yet measured			
	Road surface			Vehicle			NCAP Dummy		Roadside Objects			
		Asphalt (Roughness different)	White Line	Metal	ABS	Body	color	Windshield glass	Close	Body	Guardrail	Road pole
Picture												
	Radar	~	_	~	~	_	_	~	_	~	_	~
BRDF	LiDAR			_	_		×		X	-	×	×
				_	_	V	×		X	_	×	×


LEnvironmental modeling while designing an extrapolation formula so that unmeasured materials can be reproduced, correlation has been confirmed for targets with smooth surfaces, and research on targets with rough surfaces is ongoing.

Multi-layer model (smooth surface target)

 Reproducing reflection characteristics from material thickness and complex permittivity


 Verify consistency between extrapolated model and actual measurement values

Surface roughness model

SOKEN

- Under consideration of extrapolation model of rough surface material (ex. Asphalt road surface)
- Plan to build theoretical formula from actual measurement results of samples with different surface roughness

surfaces with different roughness

Source : SOKEN, INC DIVP[™] Consortium

[Generate Virtual-PG] For rain and snow, we plan to model the reflection characteristics change due to spatial attenuation and surface adhesion from experiments at the test site, and conduct data measurement and verification necessary for modeling using experimental facilities unique to Japan

Measurement of sensor malfunction event based on actual measurement

Large rainfall experiment facility

World's largest

- Guerrilla rain (300mm / h) is possible for a long time over a wide area
- Wide building width prevents millimeter wave multipath

Snow and ice disaster prevention experiment building

The only in the world

- Reproduce dendritic crystals close to natural snow crystals
- Snowfall above average in heavy snowfall areas (~ 3.0cm / h)

Source : National Research Institute for Earth Science and Disaster Resilience (NIED) $\mathsf{DIVP^{TM}}$ Consortium

[Virtual-PG implementation for sensor] Implemented Hi-definition 1cm-order 3D-data for sensor consistency enhancement

JARI Jtown MMS measurement results

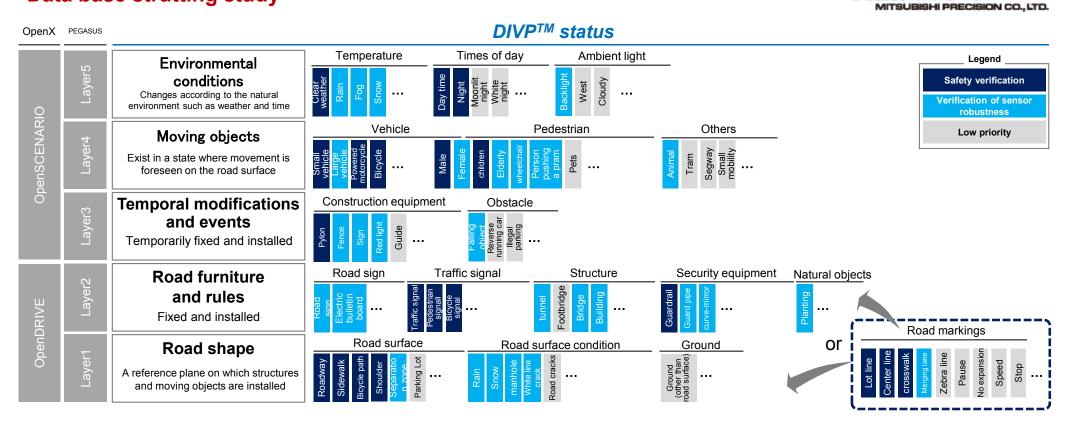
 Multipurpose urban area

 Image: mail of the state of the s

Source, Mitsubishi Precision Co. Ltd. DIVP[™] Consortium Multipurpose area

V2X testing center

[Generate Virtual-PG] Consider the priority of the model to be produced, aiming to reproduce the NCAP test at the end of FY 2020

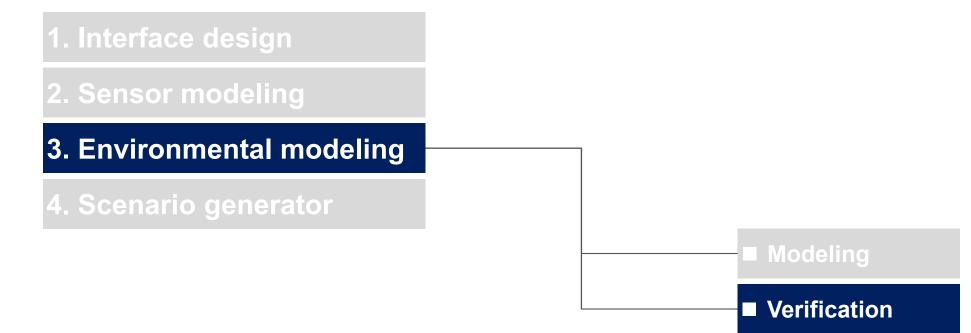

Proposed environmental model roadmap

A 三菱スレシジョン株式会社 MITSUBISHI PRECISION CO., LTD.

	Environmental model					
	FY 2019	FY 2020				
Map model	Jtown Multipurpose urban area	 Tokyo (Odaiba) Metropolitan Expressway C1 Shirosato Test Center 				
Target model	 Other vehicles: Prius Own vehicle: Alphard Road pole, color cone NCAP dummy doll NCAP dummy bicycle 	 NCAP dummy vehicle NCAP dummy motorcycle NCAP dummy children NCAP dummy animal 				

DIVP[™] now structuring asset catalog with referring PEGASUS & OpenX stricture, however found some struggle for sensor simulation assets

Data base strutting study



FY2019 Year-end report 122

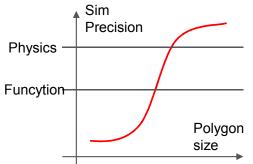
三菱プレシジョン株式会社

DIVP[™] Consortium

FY 2019 outcome

DIVP[™] Consortium

[Environmental modeling] Challenges in creating high-precision environmental models using measurement data due to data capacity issues

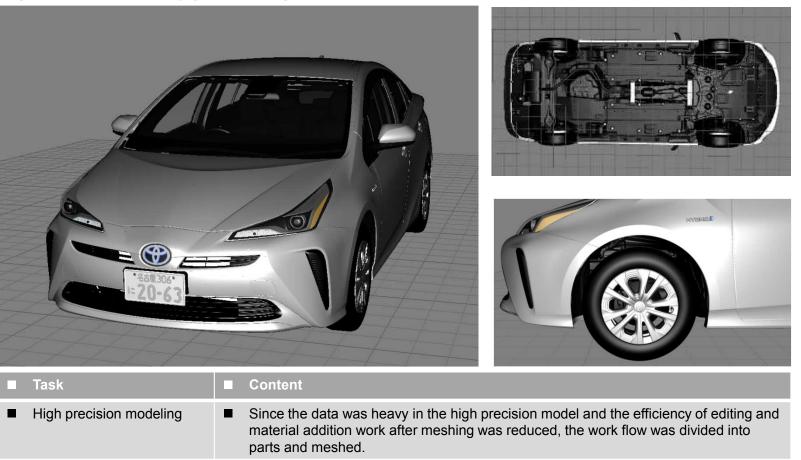

Creating high precision polygons

L 三菱スレシジョン株式会社 MITSUBISHI PRECISION CO., LTD.

Items	Target specifications / performance	Current status	Future initiatives
Target (Prius)	 Created with a mesh size of 1 mm accuracy based on laser scanner measurement data Expand to 5 levels of LOD (Level of Detail) 	 1mm accuracy model is used in Optix. However, the model with the interior removed. Create a reduced model for loading UE4 	 Improvement of gap removal method when creating LowLOD model Quantitative evaluation of mesh accuracy and simulation accuracy
Map (Jtown multipurpose urban area)	 Created with a mesh size of 1cm based on MMS measurement data 	 Multi-purpose city area is under construction with 10m square 2cm precision etc. were manufactured, but cannot be operated with PF Currently provided maps are simple maps 	 Modeling in a wide area Accuracy evaluation in mesh and texture representation
		Dhusia	Sim Precision

Analyze the effect of asset accuracy on sensor consistency using the current method ⇒ Clarify the requirements of environmental models for each sensor

* 2cm-accurate map cannot be read with Workstation-grade GPU (24GB memory)

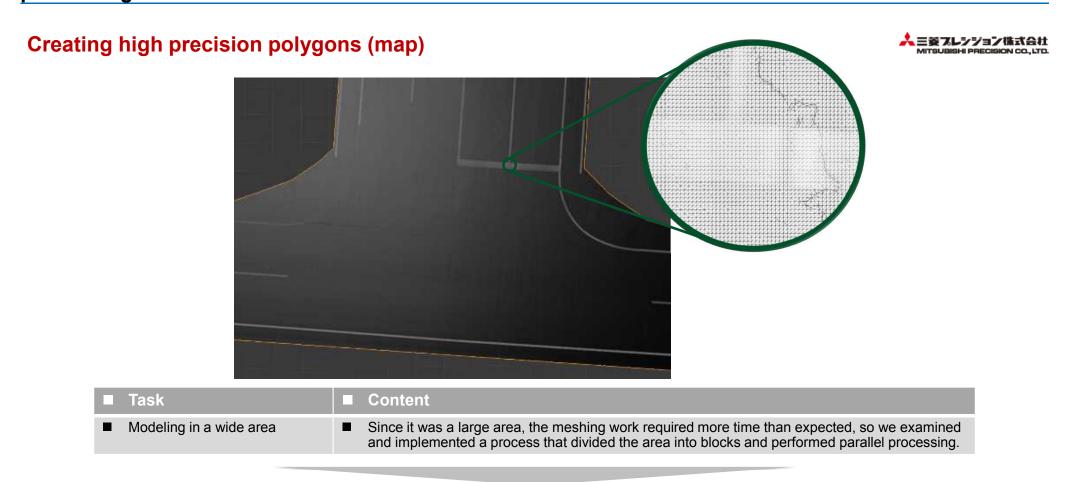

FY2019 Year-end report 124

DIVP[™] Consortium

[Environmental modeling] Since the data was heavy in the high precision model and the efficiency of editing and material addition work after meshing was reduced, the work flow was divided into parts and meshed.

Creating high precision polygons (targets)

Source : Mitsubishi Precision Co. Ltd. DIVP™ Consortium


[Environmental modeling] When the reduction was performed, a gap occurred between the parts, so the reduction with the vertices shared between the parts was performed

Creating high precision polygons (targets)							
	HiLOD Prius	LowLOD Prius	Competitor model	ECISION CO., LTD.			
		tesso: tesso: tesso:	NO IMAGE				
Number of polygons	48,570,890	4,874,194	35,774				
File size	1,382MB(1.35 GB)	165MB	9.76 MB				
■ Tas	sk	Content					
	provement of gap removal method wh ating LOD model	parts, so a reduction meth	When a reduction was performed, a gap was created between the parts, so a reduction method was implemented that retained the vertices shared between the parts				

Plan for future evaluation of the trade-off between model mesh accuracy and simulation accuracy for simulation result accuracy

Source : Mitsubishi Precision Co. Ltd. DIVP™ Consortium

[Environmental modeling] Since it was a large area, the meshing work required more time than expected, so we considered a process that could divide the area into blocks and perform parallel processing.

Since the capacity of the model after meshing becomes large, consider a data creation method utilizing textures, OpenCRG, etc.

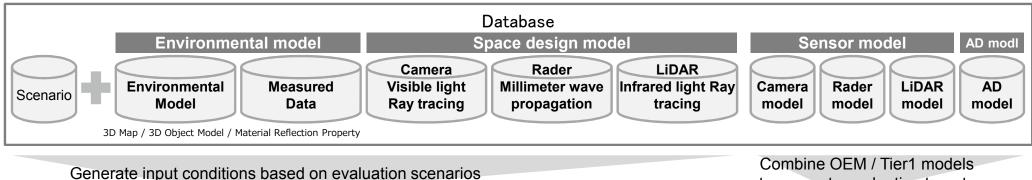
Source : Mitsubishi Precision Co. Ltd. DIVP™ Consortium

FY 2019 outcome

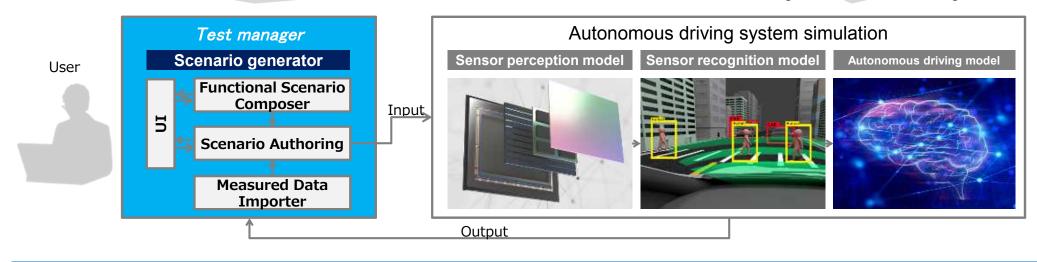
1. Interface design

2. Sensor modeling

3. Environmental modeling


4. Scenario generator

DIVP[™] Consortium


Scenario generator, which refers to a database that stores various assets and generates input data for simulation execution, determines the success or failure of DIVP[™] usability

DIVP[™] ECO-system

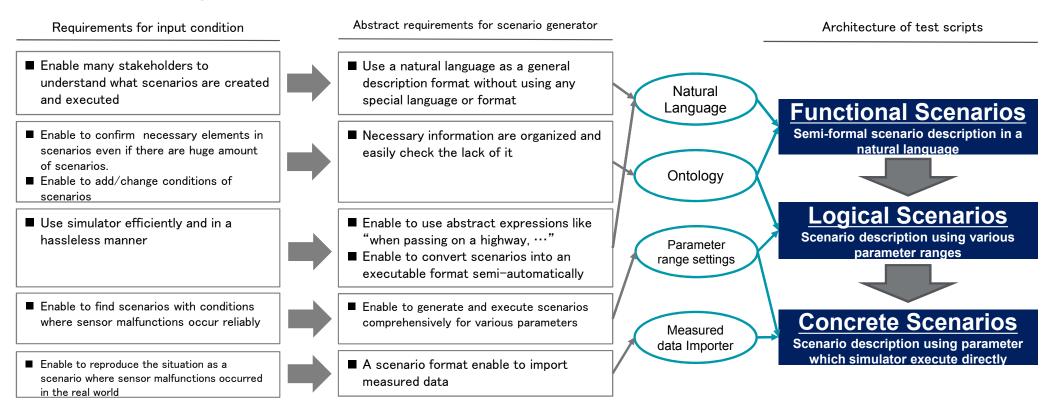
★三菱スレシジョン株式会社 🍻 SOLIZE

Combine OEM / Tier1 models to generate evaluation targets

Source : Sony Semiconductor Solutions Corporation DIVP[™] Consortium

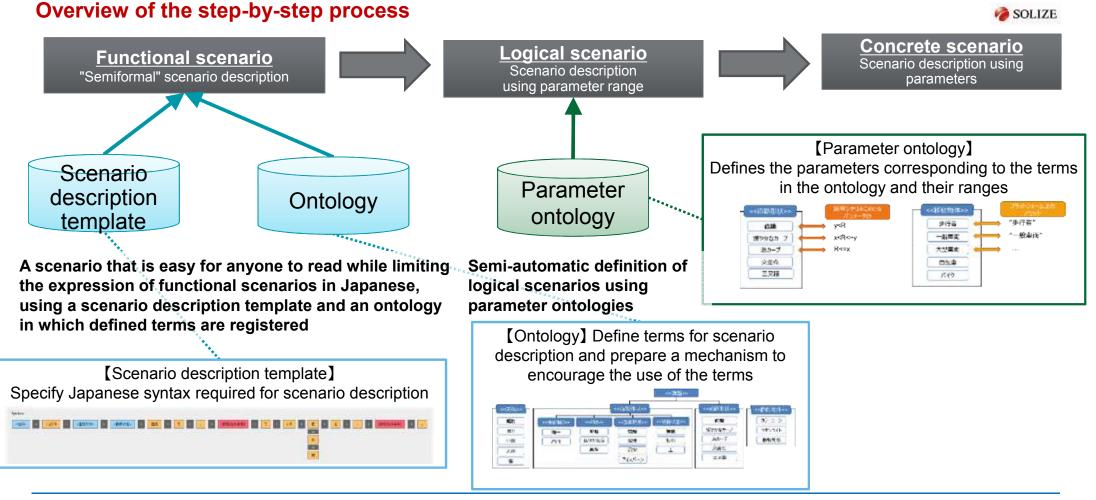
DIVP[™] has developed an SDM Generator that can easily set conditions for sensor malfunctions, with extensible framework that ensures module independence

Scenario Generator concept


Module Requirements Contents Scenario system in natural language that can easily understand and process easily Flexible and easy to **Functional Scenario** Achieve deployment from functional scenarios to specific scenarios according to the PEGASUS scenario understand Composer / system scenario system Measured Data Importer Support importing data measured in the real world Simple yet flexible UI for scenario editing Enables data editing in 3D space, enabling intuitive data creation / confirmation Setting viewpoint information Specification of actual data path and attitude information Operability Setting onboard sensor information Specifying events and user interactionsUsability is improved by Undo and Redo o perations Create a software structure that can be processed in parallel to enhance real-time performance UI/ Scenario Authoring Tool Reproduction scene of sensor malfunction factor : A function to calculate the sun position, which is backlit from the sensor position and the object position Reproduction of Display / non-display of assets that cause sensor malfunction: Display of obstacles, etc. malfunction Change of asset that causes sensor malfunction : Change guardrails to road side walls, etc. Detailed conditions of events related to malfunction can be set; time condition, asset proximity condition Standardization Standardization of input data

三菱スレシジョン株式会村

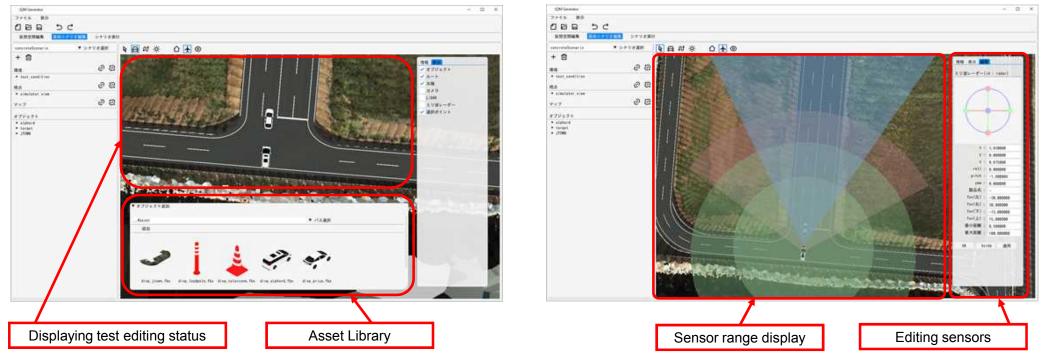
SOLIZE


[Functional Scenario Composer] Develop a system to make functional scenarios concrete with flexible and semi-automatic method using ontologies and NLP

Requirements for generate scenarios, input conditions, and assess conditions

SOLIZE

[Functional Scenario Composer] Achieving a smooth step-by-step implementation by restricting the description of functional scenarios with ontology and syntax patterns


FY2019 Year-end report 132

DIVP[™] Consortium

[UI/Scenario Authoring Tool] Build a simple SDM generator for display and editing with a simple UI

Test data display / editing example using scenario generator

Select and arrange assets required for testing from the asset library

Change of each model

Change of sensor model loading

Installing sensors on the vehicle, changing the sensor range

DIVP[™] Consortium

[UI/Scenario Authoring Tool] Easily create and set scene scenarios to reproduce sensor malfunctions

Scene creation/editing example of sensor malfunction cause using scenario generator

Calculating the position of the sun that is backlight

Calculates the position of the sun as backlight from the positional relationship between the sensor and the object

Show/hide assets

Display / non-display of assets that cause sensor malfunction

SDM Generator -----ファイル 1668 50 仮想空間編集 具体シナリオ編集 シナリオ実行 ▼ シナリオ選択 concreteScenario + 自 🖞 シナリオ ► concreteScenario(JARI1-1-1) x : 429.679843 Ø 禮倚 y : -206 719631 ▶ test_condition(晴れ) z : 30.061747 0 roll : 0.000000 視点 pitch : 22,493163 ▶ simulator view(シミュレータ視点) yaw : -49,453498 Ð マップ map(JTOWN) 視点マウス操作方法 基準位置:左ボタン オブジェクト : 中ボタン スクロール 前後 ▶ alphard(アルファード) : 中ボタン ドラッグ + ctrl ▶ target(プリウス) 選択対象 ▶ 【非表示】divp colorcone 0 オブジェクト(id : JTOWN) Traffic cone settings Non-display of the traffic cone

- 🗆 X

Source : MitsubishiPrecision Co.,LTD. DIVP™ Consortium

Position of the sun

SDM Generator

1668

仮想空間編集

concreteScenario

concreteScenario(JARI1-1-1)

▶ simulator view(シミュレータ視点)

▶ test_condition(晴れ)

+ 自 団

シナリオ

環境

視点

マップ

map(JTOWN)

オブジェクト

▶ target(プリウス)

JTOWN(JTOWN)

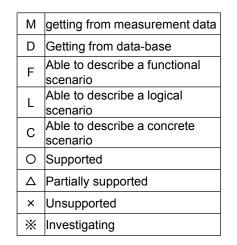
50

体シナリオ編集 シナリオ実行

▼ シナリオ選択

Ø

0


0

ファイル

[Benchmark] from BM, there is a competitive advantage of the scenario generator in the environment model setting in the logical scenario

Benchmark result of Scenario Generator

functions	setting	SDM-G (2020年度)	VTD 2.2.0	CarMaker 8.1	Vissim 2020	
Environment	Roads and roadside objects (Layer 1)	CL	С	С	С	
	Signs, signals, guardrails and buildings (Layer 2)	CL	С	С	С	1
	Construction and traffic regulation (Layer 3)	CL	С	С	CΔ	
	Weather, temperature, humidity, road conditions, backlight (Layer 5)	CL	С	CL	×	
Control target (open loop)	Ego vehicle	MCL	MC	MCL	С	1
	Other vehicle	MCL	MC	MCL	С	
	Pedestrian	С	С	С	С	
	Cyclist	С	С	С	С	
	NCAP dummy	Under review	С	×	×	
	Other (animal etc.)	С	С	С	×	
Control target (closed loop)	Ego vehicle	MCL	С	CL	С	
	Other vehicle	MCL	С	CL	С	
	Pedestrian	С	С	×	С	
	Cyclist	С	С	×	С	1
	NCAP dummy	Under review	*	×	×	1
	Other (animal etc.)	С	С	×	×	1

Item that shows the superiority of Scenario Generator

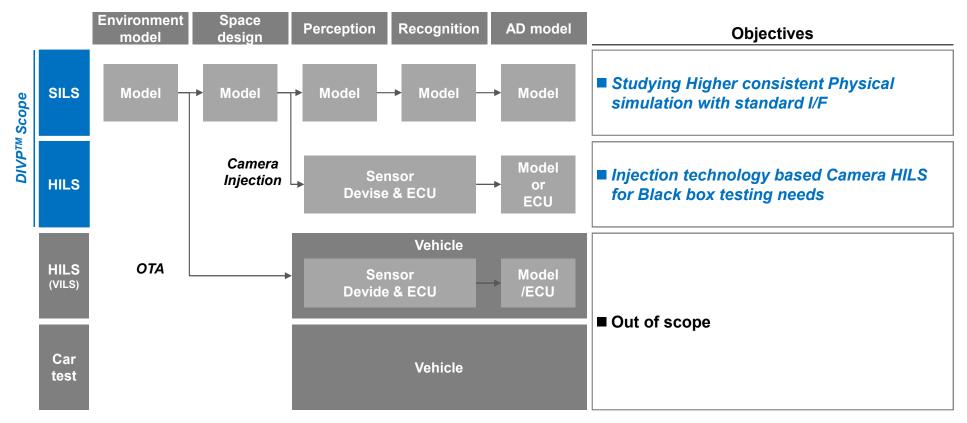
① Only Scenario Generator can be set in logical scenario for layer Lv. 1, 2 and 3 of environment model.

[Benchmark] from BM, "Test evaluations" & "Change target of imported environment models" would be an advantage vs competitor's

Benchmark result of Scenario Generator

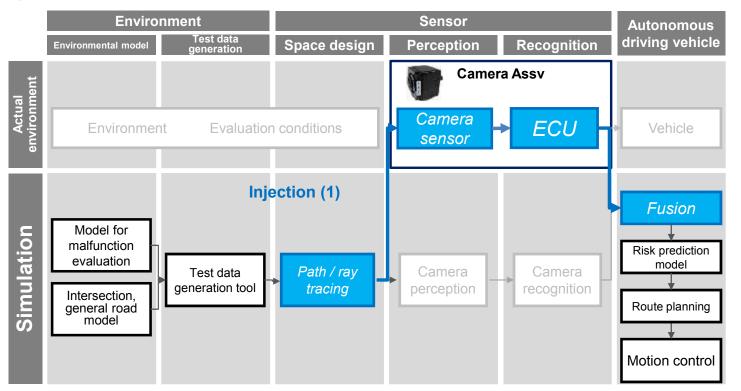
functions	setting	SDM-G (2020年度)	VTD	CarMaker 8.1	Vissim 2020	
Cooperation with other tools	OpenDRIVE (importing)	0	0	Δ	Δ	
	OpenDRIVE (exporting)	0	0	×	×	
	OpenCRG (importing)	Future consideration	0	×	×	
	OpenCRG (exporting)	Future consideration	*	×	×	
	OpenSCENARIO (importing)	Future consideration	0	×	×	
	ISO (importing)	Under review	*	×	×	
Test evaluations	Automation	Future consideration	Ж	0	×	\bigcirc
	Recording	Future consideration	*	0	×	
Evaluation loop of test data generation	Automated reconfiguration of Logical scenario parameters based on evaluation results	Future consideration	*	×	×	
	Environment for checking the execution status	Future consideration	*	×	×	
	Record of execution contents	×	*	×	×	
Simple simulation (with no sensors)	Executing	0	0	×	0	
	Recording / playing	0	0	×	×	
Change target of imported environment models	Roads and roadside objects	Under review	0	Δ	Δ	3
	Signs, signals, guardrails and buildings	Under review	0	Δ	Δ	
	Construction and traffic regulation	Under review	Ж	×	×	
	Vehicle, pedestrian, cyclist, animal, NCAP dummy	Under review	*	×	×	
	Weather, temperature, humidity, road conditions, backlight	Under review	*	×	×	

0	Supported	
Δ	Partially supported	
×	Unsupported	
*	Investigating	


Items that support only existing soft ware

- (2) CarMaker has been supported the function to evaluate test
- ③ The function to change setting after import is partially supported by other tools for Layer Lv. 1 and 2 (VTD is supported).

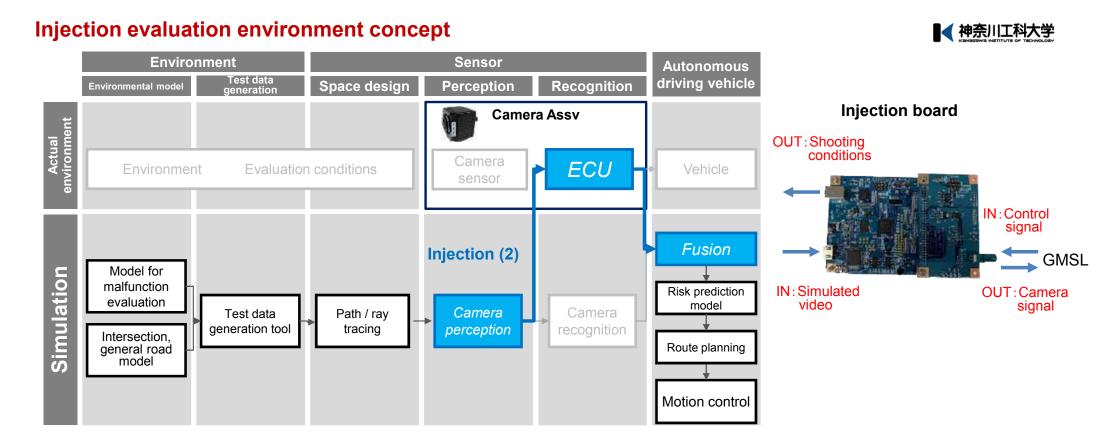
Validation framework study


DIVP[™] scoping HILS method as for Validation robustness even in Black box operation in industrial needs

V&V total framework

[Camera HILS*] Construct HILS using injection technology for future black box evaluations, and study evaluation possibilities

Injection evaluation environment concept



Configuration image Hemispheric screen projector Camera

*HILS ; Hardware in the loop, Source: Hitachi Automotive Systems, Ltd.

DIVP[™] Consortium

[Camera HILS*] Construct HILS using injection technology for future black box evaluations, and study evaluation possibilities

*HILS ; Hardware in the loop, Source: Hitachi Automotive Systems, Ltd.

DIVP[™] Consortium

END

DIVPTM

Tokyo Odaiba FOT area \rightarrow Virtual Community Ground

DIVP[™] Consortium