I Vehicle to Pedestrian(V2P) Communication Technology

(Panasonic Corporation)

Goal

Realization of a safety support system for pedestrians to reduce traffic fatalities

- ✓ Alert pedestrian or driver timely under potentially dangerous situations
- ✓ Supply competent terminals with superior portability & battery performance

[System Image of V2P Communication]

Scenarios requiring support

Single road crossing Non-line of sight Walking on roadway intersection

Right/Left turn at intersection

Scenarios not requiring support

Inside vehicle

Inside building

On/Under overpass

Walking on sidewalk

R&D overall schedule

Terminal system improvement for large-scale demonstration experiment in the final year

Remaining issues of preliminary experiment

3

Confirm success rate was more than 80% (When support is required), and failure rate was less than 20% (When support is not required)

However, it is necessary to optimize support levels and timing, and to improve convenience

Major items	Small items	Issue	Cause	Measures of this year	
Scenarios requiring support	Right/Left turn at intersection	Intersection presence notification is excessive	In pre-experiment, set parameters for more notification (As intended by design)	Change the intersection judgment condition and the notification condition to reduce the frequency of notification	
	General	Information/ Warning may not come out / may be late	Speed fluctuation needs to be considered	Change the GNSS update cycle (1 Hz→4 Hz) to improve the collision detection cycle and speed tracking	
Scenarios not requiring support	General	Avoid unnecessary operation as much as possible	In pre-experiment, set parameters for more notification (As intended by design)	Change the judgment condition of whether it is on the sidewalk to reduce the frequency of notification	
Equipment related to operation	700MHz communication terminal	Equipment trouble occurred	USB connector strength, etc.	Enhancement of USB connector, etc.	
	Backpack-type Pedestrian terminal system	Backpack-type is heavy	Large capacity battery was selected for the operating time of the system	Reduce size and weight of mobile battery based on the results of pre-experiment	
		It is difficult for primary school students to handle	Primary school students were not covered by the initial requirements	Develop school bag type terminal (Add primary school students as candidates for subjects)	

FY2018 R&D Plan

Improvement of terminal system based on preliminary experiment result

	FY2017	FY2018				
1. Fundamental Technologies						
High accuracy positioning	3D map positioning Real time processing	Detail1 More improvement of positioning accuracy				
Safety support	Applicable area expansion	Consideration of antenna for portability				
Risk prediction	Turn left/right at intersections	Risk Prediction application improvement				
•Exclusion of support unnecessary situations	Inside vehicle / building, Walking on sidewalk	Examination of evaluation environment to simulate dangerous situation				
Performance improvement	Quick collision prediction, Accurate heading direction estimation	Examination of countermeasure of 700 MHz communication congestion				
2. Prototype Terminals and System						
Pedestrian/On-board terminals	Prototype products	Detail3 Terminal improvement				
Terminal unification	Algorithm study for embedded CPU	for large scale experiments				
Measures before the spread of terminals	Roadside radar cooperation (Functional verification)	Roadside radar cooperation (test course)				
Large-scale demonstration experiment	Preliminary Experiment	Examination of the effect for pedestrian accident reduction 5 vehicles 25 pedestrians Experiment 25 pedestrians				

Approach and Results (1)

Detail 2 Detail 1 More improvement of positioning accuracy **Risk Prediction application improvement** Measures for issues that occurred in Preliminary Experiment Improve the positioning correction method by utilizing 3D map, Confirm positioning performance improvement Response improvement, optimization of judgment conditions tioning by using 3D map Improvemen Approach **[Issue**]]Notification may be late in support scene \Rightarrow Improve speed and direction response by Improvement of 3D map changing update cycle of GNSS positioning and utilization method **AND** collision determination to the hardware limitation (1) Use of Galileo satellites $(1Hz \rightarrow 4Hz)$ High-Precision (2) Correction by reference station positioning (3) Map accuracy improvement calculated by 3D Vehicle speed (m/s) map information 4 GHz period *Technology and license supplied from the University of Tokyo Source: Urban Pedestrian Navigation Using Smartphone-Based Improved tracking to vehicle speed Dead Reckoning and 3D Map-Aided GNSS Verification Results 4Hz (Target value: Horizontal error is 3 meter at high-rise buildings area) Pedestrian danger Pedestrian detection situation Shinjyuku Hitotsubashi Shinagawa Odaiba notification Improved responsiveness 2017 results ▲ Information of danger notification ▲ Waring ▲ Alert 2018 Improvement results **(Issue**) More reduction of unnecessary operation rate Walking route 2-1) Optimization of judgment on the sidewalk with the expansion of examination area Cumulative 2017 results 5.7 5.6 3.7 6.5 Frequency 2-2) Optimization of judgment conditions of (68%) [m] 2018 results 3.7 4.1 5.9 4.1 intersection presence notification

Terminal improvement for Large-scale demonstration experiment

Measures for remaining issues of preliminary experiment, and development of school bag type terminal (Target communication distance within line of sight ≥ 150 m)

Verification of the effect by risk prediction application improvement in a large scale experiment field

(Target: Success rate when support is required \geq 80%, Failure rate when support is not required \leq 20% \rightarrow minimized)

Approach Development of school bag type terminal ITS Antenna 2 In order to balance GNSS Antenna handling and safety, developed a prototype of Attach to school bag cover with a school bag built-in antenna **ITS** Antenna 1 (TX/RX1)V2P communication ITS Antenna 2 wave model ITS Antenna distance and positioning Direct Ray accuracy were equal or 0.8m Refrect Ray better than backpack type Pedestrian Ground Vehicle terminal Means of support Pedestrian terminal system On-board terminal system Notification by bone conduction earphone Terminal mounted

school bag / backpack

Risk Prediction Result						
V: Vehicle P: Pedestrian	Success Rate		Failure Rate			
	V	Р	V	Р		
Single road crossing	83%	92%	0%	0%		
Non-line of sight intersection	96%	95%	0%	0%		
Right Turn at intersection	96%	97%	1%	1%		
Left Turn at intersection	96%	97%	0%	0%		
Walking on roadway	100%	100%	0%	0%		

6

Research results summary

Major category	Minor category	2014~ 2016	2017	2018	Achievement	Practical challenges
Fundamental technology	Pedestrian positioning	Studying the use of quasi-zenith satellites Multipass elimination Dead Reckoning Using 3D map	Using 3D map (Practicality review with smartphone)	Using 3D map using Galileo ,DGPS	Achieved accumulated error $1\sigma = 3$ meter at high-rise buildings area by 3D map positioning	•Development and distribution of 3D maps in urban areas and accident prone areas •Combined with other positioning means
	Safety support	Single road crossing / Right turn at intersection Phased notification Support Unnecessary scenes	Preliminary experiment Using Map	Large Scale Experiments Measures for issues	Confirmed system effectiveness in 10 high priority scenes with suppressing unnecessary notification	Expansion of road link information in accident prone areas
	Other		Roadside radar cooperation Examination of countermeasure of 700MHz communication congestion		 Confirmed the effect by infrastructure support Proposed countermeasures when communication congestion 	Demonstration experiment under the environment where communication congestion actually occurs
Development of terminals	Terminal prototypes for the extensive experiment	Smartphone-type basic design	Backpack-type system prototype		 Provided terminals to demonstration experiment Miniaturization and 	Miniaturization and power saving •Development of power saving LSI
	Practical application study	Verification of radio interference with cellular Antenna study for smartphone	Processing load examination for dedicated terminal	Examination for terminal integration (Antenna, etc.)	 power saving 1. Examination of power saving mode according to installed function 2. Confirmed the antenna feasibility for mounting on school bag and bicycle, etc. 	•GPS antenna implementation for smartphone and wearable device