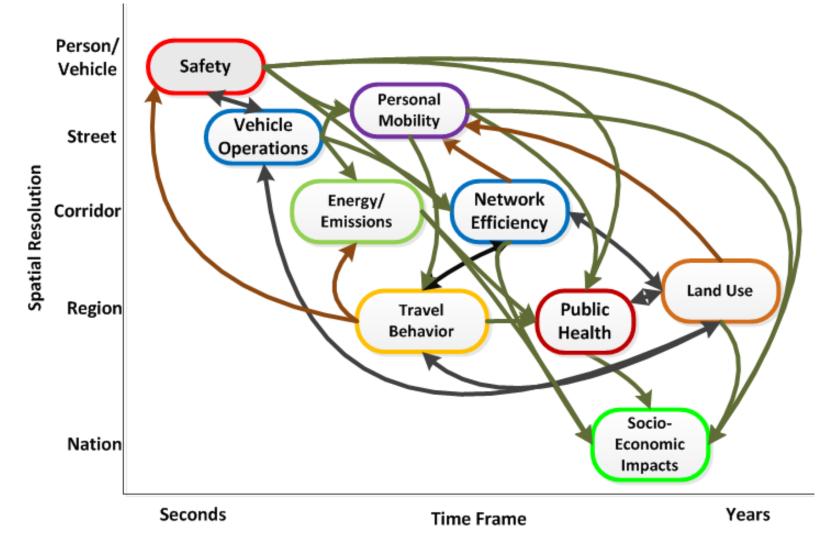


Benefits Estimation for AV Systems

Session: Impact Assessment 3nd SIP-adus Workshop

Scott Smith, U.S. Department of Transportation



Outline

- Automated Vehicle Benefits Framework
- Research Data Exchange
- EU-US-Japan Impact Assessment Subgroup

U.S. Department of Transportation

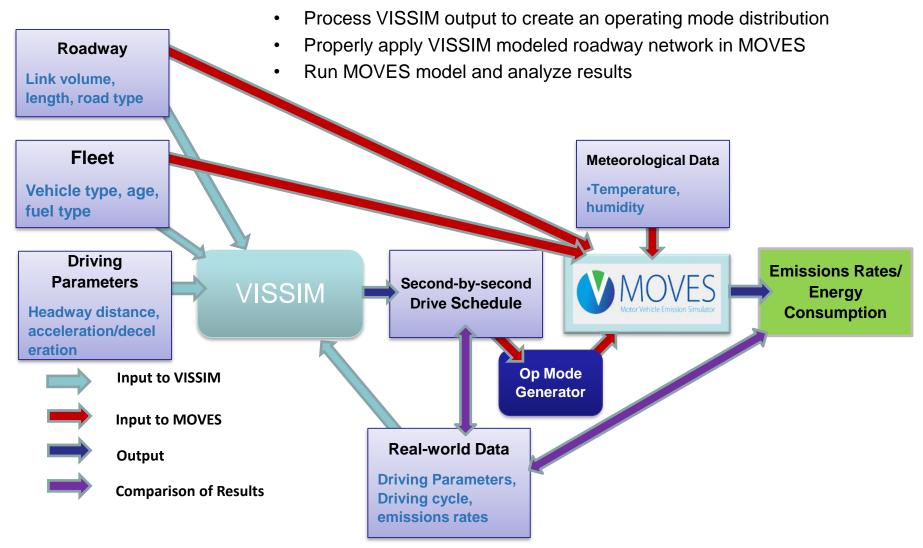
Framework

U.S. Department of Transportation

Direct and Indirect Impacts

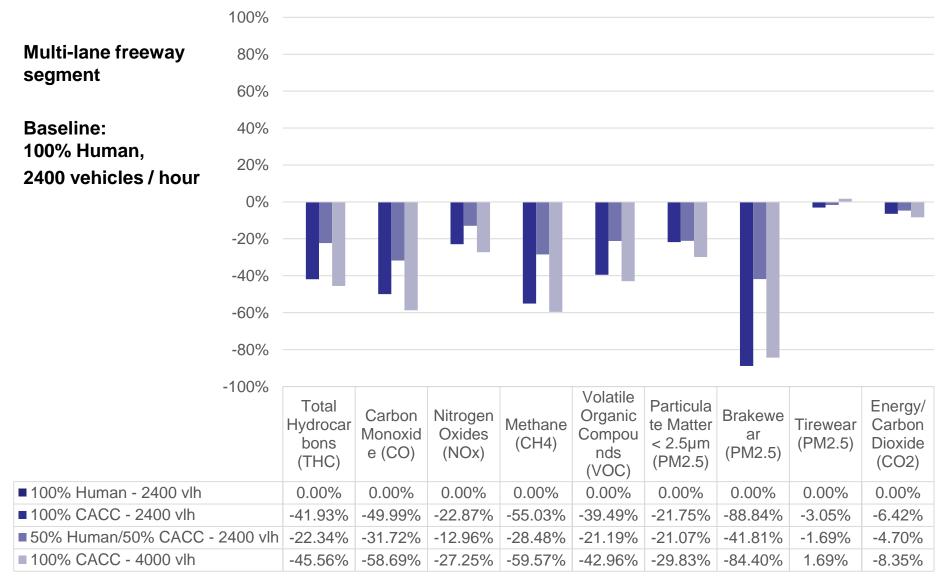
- Cost
- Infrastructure
- Safety
- Vehicle Operations
- Energy / Emissions
- Personal Mobility
 - Multi-tasking
 - Accessibility

- Asset Management
 - $\hfill\square$ Lanes and lane widths
 - V2I infrastructure
 - □ Size and weight
- Network Efficiency
- Travel Behavior
- Public Health
- Land Use
- Socio-Economic



Direct Impacts: Vehicle Operations, Energy, Emissions

- Vehicle operations: acceleration, deceleration, lane keeping, car following, lane changing, gap acceptance
- Energy and emissions: affected by changes in the driving cycle
 - Fuel Consumption
 - \square Criteria Pollutants (CO, NOx, PM₁₀, PM_{2.5}, and SO₂)
 - Other Pollutants (HC and VOCs)
 - \square GHGs (CO₂ and other greenhouse gases)
- Importance: societal cost of congestion, air pollution and GHG emissions


U.S. Department of Transportation

Energy/Emissions Approach

Percent Reductions in Emissions from 100% Human Driving

Framework: Lessons learned and next steps

Need for a clearinghouse on research, to facilitate sharing

- What data are collected?
- □ What methods (models) are used?
- What results are reported?

Understand the big picture, to ensure the right data are collected

□ For example, a mobility project may affect safety and vice versa

Next steps

- Identify data sources and automation applications for initial modeling
- Examine connections between micro and regional mobility models
- Develop AV impact models
 - Start with Safety, Mobility and Energy/Emissions
 - Continue to other areas
- Coordinate with U.S. and international evaluation efforts

Research Data Exchange

Purpose

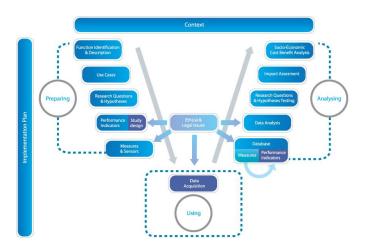
To provide a variety of data-related services that support the development, testing, and demonstration of multi-modal transportation mobility, weather, and environmental applications.

Objectives

- Enables systematic data capture from connected vehicles, mobile devices, and infrastructure
- Performs data quality checks and provides clean, well- documented data sets
- Integrates data from multiple sources into data environments

www.ite-rde.net

RESEARCH DATA EXCHANGE		
EXPLORE DATA		
Data Environments		
	All	
	All	
	BSM Data Emulator FDOT Orlando ITS World Congress Integrated Dynamic Transit Operation Intelligent Network Flow Optimization ITS World Congress Connected Vehicl Leesburg VA Vehicle Awareness Devic Minnesota DOT Mobile Observation da Multi-Modal Intelligent Traffic Signal S NCAR 2009 NCAR 2010	
	Next Generation Simulation (NGSIM) Pasadena Portland Response, Emergency Staging, Comm Road Weather Demonstration Safety Pilot Model Deployment - One Safety Pilot Model Deployment Data San Diego Seattle	


International Coordination

Impact Assessment subgroup of the EU-US-JAPAN trilateral road automation in road transportation working group

- Collection of impact assessment approaches on projects
 - <u>http://wiki.fot-net.eu/index.php/Trilateral_Collection_of_Impact_Assessment_Methods</u>

Planned activities (first priority)

- Define which impact areas we recommend to cover
- Define what we mean by each impact area (common vocabulary)
- Define key performance indicators (KPIs) with which we recommend the impact to be expressed
- Provide recommendation for baseline
- Provide examples of anticipated impact mechanisms

Sponsorship: US DOT Intelligent Transportation Systems Joint Program Office (ITS JPO)

Project Manager: Scott Smith US DOT / Volpe Center <u>Scott.Smith@dot.gov</u> 617-494-2588

www.its.dot.gov

Program Manager: Kevin Dopart US DOT / ITS JPO <u>Kevin.Dopart@dot.gov</u> 202-366-5004

Office of the Assistant Secretary for Research and Technology (OST-R) • U.S. Department of Transportation (US DOT) 1200 New Jersey Avenue, SE • Washington, DC 20590 • 800.853.1351 • E-mail OST-R

Accessibility | Disclaimer | Fast Lane | FedStats | Freedom of Information Act | No FEAR Act | OIG Hotine | Privacy Policy | USA.gov | White House

Plug-ins: PDF Reader | Flash Player | Excel Viewer | PowerPoint Viewer | Word Viewer | WinZip

OST-R's privacy policies and procedures do not necessarily apply to external web altes. We suggest contacting these altes directly for information on their data collection and distribution policies.

Backup slides

Direct Impacts: Cost & Infrastructure

- Capital and operating cost estimate for a production system
- Infrastructure requirements (road markings, signs, signals, mapping, V2V, V2I, V2P communications)
- Importance: supports the business case for widespread adoption

Direct Impacts: Safety

- Ultimately measured as fatalities, injuries and property damage for vehicle occupants and other road users
- Challenging to measure because crashes are rare events
- Proxy measures
 - Traffic violations (e.g., lane departure, following too closely)
 - Extreme maneuvers (e.g., sudden braking, steering, acceleration)
 - Instances where the human driver must take control
 - Exposure to near-crash situations
 - Response to near-crash situations
- Importance: human-caused crashes have a huge societal cost

Direct Impacts: Personal Mobility

- Is a travel option available to someone (e.g., a non-motorist)
- Journey quality (comfort), travel time, out of pocket cost
- Ability to engage in other activities while en-route
- Different effects on different sub-populations (e.g., non-motorists)
- Fleet (truck or bus) driver productivity
- Importance: higher levels of automation may significantly improve personal mobility, particular for populations that are not well-served today.

Going from Direct to Indirect Impacts, an example

Example of an AV that can deliver itself to a user Households Demand for AV that can deliver replacing owned Convenience IMPACT -)•(+)>(+ with shared parking itself of car sharing Land Use vehicles + AV Cost Availability of automated (+) shared vehicles Ease of travel for non-Marginal cost per trip motorists + (vs. owned vehicle) IMPACTS Personal Mobility Use of Zero-Willingness to Public Health Use of shared shared AV occupant share trips (+) Economy AV for single for shared trips occupant trips \$ trips Infrastructure for sharing trips Demand for person trips IMPACT Travel Behavior + VMT (congestion) IMPACT Network efficiency