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Overview of this research
Level 4 equivalent automated driving at urban area

It is necessary to have advanced perception and decision-making 
system by onboard AI, as well as infrastructure such as road facilities 
and communication facilities to support it

State-of-the-art automated vehicle technology
Knowledge of academia is essential

Active collaboration with other projects in SIP
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Advancement of automated driving technology

How much technology
development is required ?

How much infrastructure
development is necessary ?

Determination of technical and 
infrastructure requirements

Open research system of university
Kanazawa, Chubu, Meijo university

Public road experiment 
in Tokyo waterfront area



Overview of Field Operational Tests
Purpose

Verify limitation of recognition technology 
using onboard sensors
Evaluate effectiveness of V2I/V2N

Traffic light state and remaining time via 
V2I/V2N
Emergency vehicle position via V2N

Evaluate effectiveness of DIVP® simulator
Consistency verification for recognition systems
Evaluation of performance limitation of 
recognition systems

Provide experimental driving data
AD-URBAN Open image dataset v1
https://github.com/AdmoreKanazawa/open_data

Activity for improving social acceptability
Vehicle exhibition, providing test ride 
opportunities
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Field Operational Tests

Development of two test vehicles
Tokyo waterfront area
Center area of Kanazawa City

Public road testing in central 
Kanazawa city

Jul. 2019 ~ Feb. 2023
Autonomous vehicle

Public road testing in Tokyo 
waterfront area 
(Odaiba and Haneda area)

Sep. 2019 ~ Dec. 2022
V2I/V2N assisted automated driving

+ Autonomous vehicle
Driving record 
at Tokyo waterfront area

244 days of public road testing
Totally 3970.4km of automated 
driving
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LiDAR x5
Millimeter 
Wave 
Radar x9

Camera x11

GNSS/INS

Wheel Encoder

Microphone x4

V2I Antenna
V2N Router



R&D Items and major achievements
Discuss software and hardware infrastructures to 
improve robust recognition technologies in automated 
driving

Traffic light recognition technology
Traffic light detection using onboard camera

Discussion on infrastructure contributing to improve traffic 
light recognition rate
Effectiveness evaluation using V2I/V2N

Emergency vehicle recognition technology
Siren sound and sound direction recognition using 
onboard microphone

Effectiveness evaluation using V2N
Object detection technology

Object detection using Camera, LiDAR
Verification of improvements utilizing digital map for far 
object detection
Effectiveness evaluation using DIVP® simulator

Self-localization technology
Utilization of QZSS “MICHIBIKI”
Map matching technology utilizing road paint

Discussion on infrastructure contributing to improve self-
localization accuracy
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Sensors and technologies for Traffic light 
recognition

Sensors
SONY IMX390 （onboard camera）

Full HD resolution
LFM(LED Flicker Mitigation) and 
HDR (High Dynamic Range) functions

Overview of technologies
Lighting object detection with 
limited recognition area

Utilizing traffic light position from 
digital map with reference to 
accurate vehicle position based on 
self-localization

Blurred Arrow object detection
Machine learning method
Consider relative position between 
traffic light and arrow light
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Onboard camera x2
・normal camera（FOV53deg）

・telescope camera （FOV27deg）

K. Yoneda, et al., “Robust Traffic Light and Arrow 
Detection Using Digital Map with Spatial Prior 
Information for Automated Driving”, Sensors, 2020



Evaluated results and Failure cases for 
Traffic light recognition

Evaluated results
Driving data: Tokyo waterfront area

42,603 images （LED Traffic light）
Traffic light: 81,273, Arrow light: 8,555
Occlusion: 8,157

Results: 
F-value：99.0% 
(green, red, arrow lights within 120m)

Environmental failure cases for traffic light recognition
Occlusion, background assimilation, night, sunshine
(confirmed in FOTs (Field Operational Tests))
Heavy rainy（confirmed using DIVP® simulator）
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Each 
intersection

Each traffic 
light

Recognition rate
(within 120m)

0.9970.984green signal

0.9920.977red signal

0.9820.908arrow signal

0.9900.956average

backlightingnightbackground assimilationocclusion



Discussion on infrastructure contributing 
to improve traffic light recognition rate

Considerations based on FOTs results in the Tokyo waterfront area 
(for LED traffic lights)

If recognition failure is temporary, there is no effect on decision to enter intersection
Undetected: If multiple traffic lights exist at the intersection, judgment can be made from other visible traffic lights
False recognition: If it is a momentary false positive, the effect can be reduced by time series processing

If all traffic lights are not detected for a certain period of time,
Scenes of undetected traffic lights in the distance are only confirmed, but it is recognizable when approaching an 
intersection

Considerations for areas outside the Tokyo waterfront area (for Lamp traffic lights)
There are cases where it is impossible to decide to enter intersection due to the influence of forward light
There are cases where the recognition distance is shortened when the lighting area of a traffic light appears 
weak

Infrastructure conditions contributing to improved traffic light recognition rate obtained from the 
FOTs

It is desirable to have multiple traffic lights at an intersection to avoid failure recognition cases
It is more desirable to replace lamp-type traffic lights with LED-type under certain conditions, considering 
the effects of forward light and the direction of illumination, etc.
It is desirable to have traffic lights with wireless infrastructure installed to ensure robustness

7
Forward light

(All light colors are misrecognized as lighting)
Backlighting

(It can be judged from other visible traffic light)

Lamp Traffic light LED Traffic light



Effectiveness evaluation using V2I/V2N

8

Hardware used at Tokyo waterfront area
Onboard receiver for V2I and V2N

Items on loan from the Tokyo Waterfront Area FOT
Evaluation

Compare recognition distance and timing for onboard camera, 
V2I, and V2N

Install both V2I and V2N receiver in automated vehicle and collect 
driving data and both received information simultaneously 

Verify effectiveness of reducing deceleration in dilemma zone

V2I/V2N receiver 5G router
V2I antenna



Comparison of traffic light recognition 
distance and timing for each method

Traffic light recognition distance
V2N>V2I>Camera (maximum recognition distance by camera is about 150m)

Approximately 120m(*) is required for smooth decision to approach an intersection
Recognition distance is acceptable with passing through intersections for all methods

Further robustness can be implemented by fusion of all methods
Traffic light recognition timing

There is no significant discrepancies by the human eye
Notification timing of recognition results by camera and switching the traffic light state by wireless 
infrastructure (V2N/V2I)
Confirmed in FOTs in Tokyo waterfront area and Nara Prefecture
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Effectiveness verification of traffic light-coordinated 
driving using information on the remaining time via 
V2I/V2N

Effectiveness of infrastructure-assisted traffic lights
Data acquisition of lighting state information by V2I/V2N
Utilizing remaining time information

Advance deceleration in dilemma zone using the remaining time at 
traffic lights

Public road test: Haneda and Odaiba areas
Verify effectiveness of reducing deceleration in dilemma zones on public 
roads

Autonomous intersection entry: -0.4G ⇒ Using V2I/V2N information：-0.2G

10 Example of V2I Information (Visualize Remaining Time)
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Summary of issues in Camera based 
recognition and effectiveness of V2I/V2N
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Issues in camera based traffic light recognition
Achievement of 99% or higher recognition rate
(Tokyo waterfront area)

red, green, arrow lights within 120m
Failure scenes

Occlusion, background assimilation, backlighting, night, heavy 
rainy, etc.

Effectiveness of traffic light information via V2I/V2N
Acquiring of traffic light states out of sight

E.g. Occlusion by large vehicle, and Traffic lights after passing 
through a curve

Onboard cameras can decide to entry intersection after seeing the 
traffic lights as well as humans do

Improving robustness by multiple system configuration
Especially effective at an intersection with only one traffic light

Reducing maximum deceleration in dilemma zones using the 
remaining time

Occlusion by large vehicle

Traffic lights after passing through a curve

backlightingnightbackground assimilationocclusion



Sensors and technologies for the 
emergency vehicle recognition

Sensors
V2N onboard equipment

Items on loan from the Tokyo Waterfront 
Area FOT

UETAX um-100(waterproof microphone）x4
Overview of Technologies

Tested Emergency vehicle position 
information via V2N

Tested Emergency vehicle position 
information is measured by GPS
Measured position information is distributed 
via cellular communication

Recognition of siren sound and sound 
direction using microphones

Siren recognition by machine learning
Sound feature extraction

Spectrogram, FFT
SVM: Support Vector Machine

Sound direction recognition by phase 
difference between multiple microphones
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Data distribution 
via V2N

Experimental 
server

(tested) emergency 
vehicle position

Position measurement by GPS

V2N
receiver

Siren recognition using microphone

Emergency vehicle recognition via V2N

Microphone x4

Sound recognition: [C. Takatsu, et al., 2022 
(Japanese)] + sound direction recognition

Sound Classifier

Siren or not
Feature (spectrogram, FFT)



Evaluated results of emergency 
vehicle information and failure 
cases

Emergency vehicle position via V2N
Evaluation for test vehicle

Join FOTs of position data distribution for tested 
emergency vehicles at the Tokyo waterfront 
area

Evaluated results
Smooth driving trajectory can be obtained 
generally
About 20m positioning deviation is occurred 
depending on the situation.

Siren recognition using microphones
Evaluated data

Driving data in Kanazawa city, and on a test 
course

Evaluated results
Siren recognition rate: almost 96%
Siren direction accuracy: almost 10 deg
(in good visibility conditions)

Failure cases for recognitions
Noise from rain, wind noise, etc. 

Not fatal issues, but needs to consider installing 
conditions

Reflected sound, and occlusion by buildings, etc.
Influence on direction estimation13

Precision： Index of low false detections
Recall： Index of low miss detections

RecallPrecision
0.9600.966

Evaluated results for siren recognition

Google maps

Distributed V2N information 2022/1/13 13:30

About 20m deviation

Poor Position accuracy

100m（20km/h） 200m(30km/h)0m（0km/h）

Spectrogram when an emergency vehicle is stopped 
and the vehicle accelerates and moves away from a 
short distance to a long distance



Effectiveness of Emergency Vehicle 
Position Information via V2N

Considerations based on the FOTs in the Tokyo Waterfront Area
Emergency vehicle location information via V2N

Particularly effective in occluded or distant scenes
Azimuth accuracy is acceptable at long distances
Positioning accuracy is depended on 
satellite conditions especially at short range

Issue: understanding detailed vehicle behavior
Siren sound recognition using microphone

Siren direction estimation accuracy is about 10 deg 
(in good visibility conditions)

Effectiveness of emergency vehicle location information via V2N
For manual driver or automated driving systems below Level 3

If the driver eventually takes avoiding action against an emergency vehicle in a short 
range, the V2N information is expected to function effectively as a means of providing 
information at an early stage

For automated driving systems of Level 4 or higher
It is necessary to take avoiding action according to the driving 
position of emergency vehicles and surrounding vehicles
It is important to understand the detailed behavior
of emergency vehicles at a short range

It is also necessary to combine methods such as 
siren sound recognition and image recognition 
to understand the detailed behavior
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Influence of emergency vehicle position error 
on azimuth
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Sensors and Technologies for object detection
Data Acquisitions

SONY IMX390 (in-front camera)
Onsemi AR0231 (surround camera)

resolution：Full HD
HDR（High Dynamic Range） function available

Velodyne VLS-128（omni-directional LiDAR）
# of lasers：128， max distance：300m
FOV: horizontal 360deg, vertical 40deg

Technologies
Object detection (camera)

2D bounding box from DNN*
Our trained model based on YOLOv3, YOLOv4
Region of Interest (ROI) from digital map

Object detection (LiDAR)
3D bounding box from DNN*

Our trained model based on PointPillars
Fusion both 2D and 3D bounding boxes

Improve accuracy by combing LiDAR/Camera results

15

In-front camera（FOV 53deg）

Surround camera（FOV 60deg）x8

Omni-directional LiDAR

*DNN：Deep Neural Network



Object detection results and failure cases
Evaluation

Data (collected area)
Odaiba & Haneda
Kanazawa Univ.

Results (detected max distance)
vehicle： within 200m
pedestrian：within 70m

Confirm Effectiveness of fusion of LiDAR/camera
Failure cases

Occlusion，similar background，rainy （camera, 
LiDAR）
Night, backlight （camera）

Confirm in FOTs，simulation
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Blind spot impact assessment （red：correct，green： result）

Influence of rainy

LiDAR Camera Fusion of LiDAR/camera

Detection accuracy under 
different occlusion rate

（This evaluation is done each frame. It 
expect that the accuracy may improve 

by using tracking process.）

※definition of occlusion rate: 
・LiDAR: invisible area ratio of 3D box
・Camera：inviable area ratio of 2D box



Effectiveness of evaluation using simulation 
environment in object detection

17

Consideration based on the FOTs
Distance of detection become shorter by factors

occlusion，similar background，rainy, etc.
Solution : utilize high precision digital maps

To focus on far region, detection process is done only ROI 
Effective in urban including right-turn in intersection etc.

Necessary to clarify the limitation of sensors
It needs huge cost and inefficient in real environment

Effectiveness of evaluation using simulation environment
Utilization of simulation is important aspect of reproduce difficult scenes

Expect sensors layout and model training to improve the accuracy
Simulation environment is necessary for safety assessment

Accuracy of various 
difficult scenes

（This evaluation is done each frame, it 
expect that the accuracy may improve 

by using tracking process.）

The results reported by 
collaboration with DIVP®

Focus on 
far region

Truck (240m far)

vehicle (199m far)

Processed within ROI

Difficult vehicle types All conditions(types, weather) Weather : rainyOcclusion ratio
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Self-localization Technology Efforts
The necessity of self-positioning estimation technology

High-precision maps are effective for automatic driving in 
urban areas
High-precision self-positioning is essential to use high-
precision maps

Difficult to estimate self-position by GNSS alone, e.g., in tunnels
Accurate self-position estimation by map-matching

Toward Improving Reliability
It is important to improve both GNSS/INS* and map-matching

Specifics of Research and Development
1.Development of GNSS/INS

Robust lane-level position estimation (1.5m accuracy)
Assumed to be used in conjunction with map-matching technology, etc.

RTK-GNSS (0.3m accuracy) reliability estimation
Utilization of Quasi-Zenith Satellite MICHIBIKI
Level of automatic operation possible with GNSS/INS alone

2.Development of map-matching technology
Map-matching technology utilizing ortho-images
High-precision self-position and attitude estimation using vehicle-
mounted grade GNSS/INS in combination

18 *GNSS/INS：Global Navigation Satellite System /Inertial Navigation System



Overview of Satellite Positioning 
Technology (GNSS/INS)

Sensors
Septentrio Mosaic-X5 (MICHIBIKI-
compliant GNSS receiver)

CLAS-LIB enables PPP-RTK using CLAS
ADIS16475 (general-purpose MEMS-
IMU)

6-axis MEMS-IMU with a level that can 
be installed in vehicles in the future

Overview of technology
High accurate position estimation 
using vehicle motion

Accurate positioning by high precision 
estimation of vehicle motion using GNSS 
Doppler

Improvement of RTK-GNSS usability 
by utilizing vehicle motion constraint

Improvement of RTK-GNSS positioning 
accuracy by improving the initial position 
of RTK-GNSS search

19

Aoki Takanose, et. al., Improvement of Reliability 
Determination Performance of Real Time Kinematic 
Solutions Using Height Trajectory, Sensors, 21, 2, 
2021.1 

GNSS Receiver
mosaic-X5
Septentrio

MEMS-IMU
ADIS16475

AnalogDevises
IMU

Acceleration and Speed

GNSS
Fix solution’s (Height)

Height Trajectory
estimation

Reliability  
verification for Fix 

solution

Height Trajectory

Positive FixNegative Fix



Satellite positioning technology (GNSS/INS) evaluation 
results and underperformance factors

Performance evaluation results
Evaluation data (Tokyo waterfront area)

10 km route including Yurikamome elevated railway line
Evaluation index: Percentage of positional accuracy achieved

Achievement rate of 1.5m accuracy, reliability of 0.3m accuracy
Percentage of 0.3m accuracy achieved 10 seconds after correction information is lost

Evaluation result
1.5m accuracy achieved 96%, 0.3m reliability 99%, 0.3m accuracy achieved 89% 
after 10 seconds

Factors causing positional inaccuracy
GNSS signal degradation due to buildings 
and structures
Integral position error due to INS error
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Percentage

96%1.5m accuracy

99%0.3m reliability

89%0.3m accuracy after 10 
seconds

Under the overpass/GNSS signal degradationPosition error due to INS after 
interruption of correction information

Trajectory by INS

True trajectory

Position error



Highly Reliable Self-Positioning Technology Using 
Satellite Positioning Technology (GNSS/INS)

Consideration based on the results of verification in the Tokyo waterfront area
Consideration of GNSS signal degradation due to buildings and structures

Lane-level position estimation (accuracy: 1.5m): generally applicable with improved algorithms (96%)
GNSS/INS alone can be used for automated driving (accuracy of 0.3m): Reliability can be determined 
(99%). However, it is difficult to completely eliminate position estimation errors using GNSS alone

Consideration of integral position error due to INS error
If absolute position cannot be estimated due to GNSS signal shielding/disruption of correction 
information, it is difficult to maintain 0.3m accuracy for 10 seconds.
Even if a highly accurate INS (FOG*) is used, the position accuracy after 10 seconds is equivalent to that 
of a general-purpose MEMS-IMU. However, it is highly possible to maintain 0.3m accuracy for a shorter 
period of time (8 seconds)

Toward reliable self-position estimation using satellite positioning technology
In areas where the number of GNSS satellites decreases or accuracy deteriorates due to 
buildings/structures, it is particularly important to collaborate with other methods such as map-
matching technology.
It is also important to identify in advance the sections where positioning accuracy will 
deteriorate

Use of 3D map data, etc

21 Tokyo Waterfront Course

Reference satellite
Satellite with small error margin
Satellites with large errors 

Locations where the number of satellites is reduced

*Fiber Optic Gyro

An example of using 3D map 
data to gain a preliminary 
understanding of the 
environment in which satellite 
positioning accuracy 
deteriorates.



Overview of Map Matching Technologies

Sensors
GNSS/INS: Applanix POS-LV125

GNSS/INS with MEMS-IMU
Used for dead reckoning

LiDAR: Velodyne LiDAR×5
Used for map matching (Ortho image generation)

Overview of technology
Dead reckoning (DR)

Position estimation by integrating velocity vectors
Map matching

Ortho image generation from LiDAR reflectivity
Creating road pattern images
Reflectivity correction based on the Lambert 
model

Error correction of DR by matching ortho images
Estimating dead reckoning error

Improving accuracy and robustness by time 
series processing
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LiDAR
・VLS-128 ×1
・VLP-32c ×2
・VLP-16 ×2

Ortho image
(using LiDAR)

Reflectivity correction model, yaw angle estimation technology, etc. added based 
on the following research:
N. Suganuma, D. Yamamoto and K. Yoneda, “Localization for autonomous vehicle 
on urban roads”, Journal of Advanced Control, Automation and Robotics, 2015.



Evaluation results and failure cases
Evaluation of localization accuracy

Data for evaluation in Kanazawa city
Driving route of approximately 20 km
Route that includes urban and mountain areas

Evaluation index
Position error calculated using the GNSS/INS 

post-processing results as the ground truth
Results

Longitudinal RMS error 0.097 m and lateral RMS error 0.079 m
Failure cases

Material of road surface (thermal barrier coating and concrete pavement)
Blurring of road patterns and wet road surface cased by rain

23 濡れた路面路面

カメラ画像 LiDAR画像

破線が薄くなって見えにくい状態Wet road with concrete pavement Fading of dashed line

Camera image LiDAR imageカメラ画像
LiDAR反射率 オルソ画像地図

遮熱性舗装

Road with thermal barrier coating

Camera image LiDAR image (ortho map)

Vehicle position

Thermal barrier coating
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Conditions of infrastructure for improving 
localization accuracy by map matching

Consideration based on the FOTs (using map matching with ortho images)
Highly accurate localization can be achieved using map matching technology, including in places 
where GNSS/INS positioning accuracy is reduced (e.g., in tunnels and under overpasses).
Road surface wetness affects localization accuracy in areas where white line contrast is low.

Thermal barrier painted roads and concrete paved roads (Evaluation of performance limits using virtual 
space has also been conducted)

Sections with unclear road patterns affect the localization accuracy.
Blurring of white lines (The effect of blurriness on recognition has also been evaluated)

However, if the interval affecting localization accuracy is short, there is no problem in practical 
use.

FOTs areas in Tokyo Waterfront Area and Kanazawa City
Conditions of infrastructure for improving localization accuracy concluded from the FOTs. 
It is recommended to avoid situations where the infrastructure for localization (e.g., white lines) 
doesn't exist for a long continuous distance

Infrastructure for localization had better be easy to distinguish from other patterns (e.g., high 
contrast between white lines and the pavement)
Considering the malfunctions of map matching, multiplexing techniques are needed, for example, 
other map matching techniques or combination with GNSS/INS.

24 Definition of road surface wetting level Effect of wet road surface with thermal barrier coating
(Investigation of performance limits by simulation)

Lv. 0 Lv. 1 Lv. 2 Lv. 3 Lv. 4

Penetration
Road surface contains water.

Saturation
Water seeping from the road surface 

and water on the road surface.

Thin water film
A thin water film of 1 mm to 2 mm 

thick covers the road surface.

Thick water film
A water film of more than several 

millimeters covers the road surface.

Specular reflection Specular reflectionRetroreflection

Diffuse 
reflection

Specular 
reflection

Incidence
Diffuse reflection

Incidence



Summary
FOTs at Tokyo waterfront area

Period: September 2019 ~ December 2022
Driving days: 244 days
Automated driving distance: 3970.4 km

Reports on the hardware and software infrastructures contributing to the 
improvement of recognition technologies in automated driving

Traffic light recognition technology
Emergency vehicle recognition technology
Object detection technology
Self-localization technology

Satellite positioning technology utilizing QZSS “MICHIBIKI”
Map matching technology using road paints

Toward future utilization of research and development results of AD-URBAN 
Project

We will continue to share information on the status of infrastructure that contributes to the 
improvement of automated driving technology with related parties as necessary.
We will continue to provide data obtained from FOTs (AD-URBAN Open image dataset v1), 
even after the completion of the project.
We will continue to discuss with DIVP®, SAKURA, and other related parties for efficient and 
comprehensive safety evaluation of automated driving technology, even after the 
completion of the project
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